zoukankan      html  css  js  c++  java
  • 如何理解 Python 的赋值逻辑

    摘要:
    如果你学过 C 语言,那么当你初见 Python 时可能会觉得 Python 的赋值方式略有诡异:好像差不多,但又好像哪里有点不太对劲。

    本文比较并解释了这种赋值逻辑上的差异。回答了为什么需要这种赋值逻辑以及如何使用这种赋值逻辑的问题。

    当然,即使未学过 C 语言,也可通过本文更好地了解 Python 的赋值逻辑——这种赋值逻辑影响着 Python 的方方面面,从而可以让你更好地理解和编写 Python 程序。

    第一章 引例

    先来看一组似乎矛盾的代码:

    # 代码 1
    
    >>> a = 3
    >>> b = a
    >>> b = 5
    >>> a
    3
    

    这看上去似乎很好理解。第二步中, a 只是把值复制给 b,然后 b 又被更新为 5ab 是两个独立的变量,那么 a 的值当然不会受到影响。

    真的是这样吗?

    再来看一段代码:

    # 代码 2
    
    >>> a = [1, 2, 3]
    >>> b = a
    >>> b[0] = 1024
    >>> a
    [1024, 2, 3]
    

    第二步中,a 只是复制把列表复制给 b,然后更新 b[0] 的值,最后输出 a,可是 a 竟然也被改变了。

    按照代码 1 的逻辑(即变量之间独立),代码 2 的中的 a 不应该受到影响。

    为什么出现了这样的差异?

    第二章 Python 的“反直觉”

    先不解释上面那个“看似矛盾”的问题。

    先来看看另一组简单的 Python 代码在内存中是什么样子的:

    # 代码 3
    
    b = 3
    b = b + 5
    

    它在内存中的操作示意图是这样的:

    然而,从代码的的字面意思上看,“把 3 赋给 b,把 b 加 5 之后再赋给 b。”

    也就是把代码看成这个样子:

    b ← 3
    b ← b + 5
    

    所以下面这张在内存中的操作图可能更符合我们的直觉:

    也即 b + 5 的值又写回到 b 中。典型的 C 程序就是这样的。为变量 b 分配一个 int 型的内存单元,然后将整数 3 存放在该内存单元中。b 就代表了该块内存空间,不再移动,可以更新 b 的值,但 b 在内存中的地址就不再变化了。所以我们说 b = b + 5,就等于 b ← b + 5,把 b 的值加 5 之后还依然放入 b 中。 变量 b 和它所在内存空间紧紧绑定在一起,人形合一。

    而再看看上面 Python 中的内存示意图,b + 5 得到了一个新值,然后令 b 指向了这个新值。换句话说,它做的是事情是这样的:

    b → 3
    b → b + 5
    

    先令 b 指向 3,再令 b 指向 b + 5 这个新值。

    C 程序更新的是内存单元中存放的值,而 Python 更新的是变量的指向。
    C 程序中变量保存了一个值,而 Python 中的变量指向一个值。

    如果说 C 程序是通过操纵内存地址而间接操作数据(每个变量固定对应一个内存地址,所以说操纵变量就是操纵内存地址),数据处于被动地位,那么 Python 则是直接操纵数据,数据处于主动地位,变量只是作为一种引用关系而存在,而不再拥有存储功能。

    在 Python 中,每一个数据都会占用一个内存空间,如 b + 5 这个新的数据也占用了一个全新的内存空间。

    Python 的这种操作让数据成为主体,数据与数据之间直接进行交互。

    而数据在 Python 中被称为对象 (Object)

    这句话并不太严谨。不过在这个简单的例子中是成立的。

    一个整数 3 是一个 int 型对象,一个 'hello' 是一个字符串对象,一个 [1, 2, 3] 是一个列表对象。

    Python 把一切数据都看成「对象」。它为每一个对象分配一个内存空间。 一个对象被创建后,它的 id 就不再发生变化。

    id 是 identity 的缩写。意为“身份;标识”。
    在 Python 中,可以使用 id(),来获得一个对象的 id,可以看作是该对象在内存中的地址。

    一个对象被创建后,它不能被直接销毁。因此,在上个例子中,变量 b 首先指向了对象 3,然后继续执行 b + 5b + 5 产生了一个新的对象 8,由于对象 3 不能被销毁,则令 b 指向新的对象 8,而不是用对象 8 去覆盖对象 3。在代码执行完成后,内存中依然有对象 3,也有对象 8,变量 b 指向了对象 8

    如果没有变量指向对象 3(即无法引用它了),Python 会使用垃圾回收算法来决定是否回收它(这是自动的,不需要程序编写者操心)。

    一个旧的对象不能被覆盖,因旧的对象交互而新产生的数据会放在新的对象中。也就是说每个对象是一个独立的个体,每个对象都有自己的“主权”。因此,两个对象的交互可以产生一个新的对象,而不会对原对象产生影响。在大型程序中,各个对象之间的交互错综复杂,这种独立性则使得这些交互足够安全。

    C 程序为每个变量都分配一个了固定的内存地址,这保证了 C 变量之间的独立性。

    C 语言是变量(也即内存地址)之间的交互,Python 是对象(数据)之间的交互。这是两种不同的交互方式。

    那么,Python 这种数据之间直接进行交互的好处体现在哪里?

    很遗憾,这并不是本文所要讨论的内容,该部分属于面向对象设计的核心内容。本文只是对 Python 的这种交互方式与 C 语言的交互方式做了一些比较,以区分两者在逻辑与物理上的差异所在。

    相信这种逻辑会帮助你更好地编写 Python 程序,并且帮助你在日后更加深入地理解面向对象的程序设计。

    本章补充:
    Python 的赋值更改的是变量的指向关系,因此,对于 Python,从前向后阅读一个赋值表达式会更加容易理解。

    // C 语言
    b ← b + 5	// 把 b+5 的值赋给 b
    
    # Python
    b → b + 5	# 令 b 指向 b + 5
    

    第三章 回答第一章的问题

    先看代码 1:

    # 代码 1
    
    >>> a = 3
    >>> b = a
    >>> b = 5
    >>> a
    3
    

    Python 中所有的数据都是对象,数字类型也不例外。3 是一个 int 类型的对象,5 也是一个 int 型的对象。
    第一行,a 指向对象 3
    第二行,令 b 也指向 a 所指向的对象 3
    第三行,因为对象不可被覆盖(销毁),令 b 指向新对象 5,则只剩下 a 指向对象 3
    第四行,输出 a,得到 3

    在内存中的操作示意图 (Python):

    这与第一章中的解释完全不同,第一章中的解释是用 C 语言解释的:

    这是两种完全不一样的机制。

    Python 中 b 首先指向了对象 3,然而因为对象之间的独立性,一个对象不能去覆盖另一个对象,则令 b 指向对象 5,而不是将对象 3 在内存中替换为对象 5

    再来看代码 2:

    # 代码 2
    
    >>> a = [1, 2, 3]
    >>> b = a
    >>> b[0] = 1024
    >>> a
    [1024, 2, 3]
    

    第一行,令 a 指向一个列表 [1, 2, 3]
    第二行,令 b 也指向 a 所指向的列表;
    第三行,令 b[0] = 10241024 虽然是一个对象,但它并没有试图覆盖b所指向的对象,而是对该对象的第一个元素进行修改。修改,而不是覆盖,所以它可以原对象进行操作,而不是令 b 指向修改后的对象。
    所在第四行输出的 a 所指向的列表也发生了变化。

    在内存中的操作示意图 (Python):

    这种对象的值可以修改的对象被称为可变对象 (immutable object)。常见的列表、字典为可变对象。

    因为它的值可以被修改,因此如果有多个变量指向该列表:

    a = [1, 2, 3]
    b = a
    c = a
    d = a
    ...
    

    那么使用 b, c, d, ... 的任何一个变量都能访问该对象并修改其中的内容。这种特性常常被我们用于函数的参数传递,如果函数的参数是可变对象,那么函数可以对“实参”中的内容进行修改:

    >>> a = [1, 2, 3]
    >>> def change(t):
    		t[0] = 1024
    
    >>> change(a)
    >>> a
    [1024, 2, 3]
    >>>  
    

    调用函数 change 时,令 t 也指向了 a 所指向的列表,然后使用 t 更改了列表中的第一个元素,更改,而不是覆盖,因此对 t 所指向的对象的更改也改变了“实参” a 所指向的对象。而 C 语言则因为实参到形参是值传递,则无法改变实参的内容(虽然借助指针可以实现,但这里只说一般情况下)

    但在函数以外的区域,我们要尽量避免这样使用,这很容易导致出错(当然,有时候会很有用,这取决于你的程序)。比如,在多人协作编程时,如果甲不小心修改了某可变对象,那么乙、丙、丁等用到该对象的人都会受到影响。

    而对于不可变对象 (immutable object),即其值无法更改的对象,传入函数时则不会影响“实参”的值:

    >>> a = 5
    >>> def add(n):
    		n = n + 2
    
    >>> add(a)
    >>> a
    5
    

    调用函数 add 时,令 n 也指向了 a 所指向的对象 5, 再执行 n = n + 2n 所指向的对象 5 与对象 2 相加得到了一个新的对象 7由于一个对象不能覆盖另一个对象,则 n 指向新的对象 7,而没有改变原对象。因此 a 的值未发生变化。虽然与 C 程序的结果一致,但与 C 程序的机制完全不同,C 程序之所以没改变 a,是因为调用函数时只发生了值传递,即只把 a 的值复制给了 n

    不要混淆这两种赋值逻辑,它们有着完全不同的物理实现方式。

    不同的思维逻辑会导致不同的编写逻辑。尽管这两种逻辑在很多情况下的结果是一致的,但并不能就简单地认为它们是一致的。否则在一些小的细节方面出了错误,就会难以理解。只能死记硬背,把一些东西当作 Python 的特例来记,虽然「唯手熟尔」也可以让你走得很远,但思维正确时,不仅可以走得更远,也会走得更加轻松。

    比如,当你的思维清晰时,以下问题的答案自然也就水落石出了:

    • 为什么列表的方法的返回值大多是 None
    • 为什么字符串的方法的返回值大多是一个新的对象?
    • 为什么 Python 中没有自增/自减运算符?
    • 为什么有的可变对象传入函数之后,却不能被函数修改“实参”的值?
      (比如将上面的 change 函数的主体改成 t = t[1:]。调用函数之后,a 所指向的对象并没有发生改变。)
    • ……

    这些内容与本文主题不大相关,所以不再列出答案。

    有趣的补充:

    1. 数字是一个天然的不可变对象(immutable object)。
    对于 n = n + 2,有人可能会说,为什么不能把它看成像列表那样的修改,修改后 n 依然指向的是原对象,这样的话执行 add(a) 之后,a 就会变成 7 了,可为什么不是这样?
    因为每一个数字都是一个单个的对象,而对象不能覆盖对象。所以该句实际上是: a 指向的对象加上对象 2,产生了一个新的对象,然后令 a 指向了新对象 a + 2
    因此,数字类型并不存在修改这一说,它是一个天然的不可变对象。

    2. 为什么 Python 中没有自增(++)、自减(--)运算符?
    自增或自减运算符,在 C 语言中很常用,简洁实用。但在 Python 中却一定不会有。上节说到,数字是天然的不可变对象,所谓自增就是自身增加,所以它无法自增。它只能从一个对象指向下一个对象。可以这样写 a += 1
    3. 既然 Python 更改的只是引用关系,那么如何复制一个列表?

    a = [1, 2, 3]
    b = a
    # 这样做不能复制一个列表,a 和 b 指向的都是列表 [1, 2, 3]
    
    # 答案:
    ## 1. 使用 list 的 copy 方法
    b = a.copy()
    ## 2. 使用 slice 操作
    b = a[:]	# slice 操作返回一个新的对象
    

    最后一章 回顾

    本文的章节安排是基于便于讲解的内容逻辑。这里给出文章的思维逻辑,以便回顾:

    • Python 与 C 语言的赋值逻辑差异
      • 一个直接操纵数据,一个间接操纵数据
    • 为什么需要这种赋值逻辑
      • 帮助实现对象之间的交互
        • 对象不可被直接摧毁(覆盖)
        • 可以修改可变对象的值
        • ……
      • 为什么想要对象之间进行交互(面向对象设计的内容)
    • 如何使用这种赋值逻辑
      • 从左向右阅读/编写一个表达式
      • 使用对象交互来设计、理解程序
        • 为什么可变对象可以更改“实参”,而不可变对象不可以
        • 为什么没有自增/自减运算符
        • 需要复制一个可变对象怎么办
        • ...
  • 相关阅读:
    团队项目:二次开发1.0
    文法分析2
    文法分析1
    词法分析实验总结
    0916 编程实验一 词法分析程序
    0909初学编译原理
    复利计算
    0302思考并回答一些问题
    1231 实验四 递归下降语法分析程序设计
    1118实验三有限自动机构造与识别
  • 原文地址:https://www.cnblogs.com/andywenzhi/p/7453374.html
Copyright © 2011-2022 走看看