zoukankan      html  css  js  c++  java
  • hdu-5119-Happy Matt Friends

    http://acm.hdu.edu.cn/showproblem.php?pid=5119

    Happy Matt Friends

    Time Limit: 6000/6000 MS (Java/Others)    Memory Limit: 510000/510000 K (Java/Others)
    Total Submission(s): 341    Accepted Submission(s): 130


    Problem Description
    Matt has N friends. They are playing a game together.

    Each of Matt’s friends has a magic number. In the game, Matt selects some (could be zero) of his friends. If the xor (exclusive-or) sum of the selected friends’magic numbers is no less than M , Matt wins.

    Matt wants to know the number of ways to win.
     

    Input
    The first line contains only one integer T , which indicates the number of test cases.

    For each test case, the first line contains two integers N, M (1 ≤ N ≤ 40, 0 ≤ M ≤ 106).

    In the second line, there are N integers ki (0 ≤ ki ≤ 106), indicating the i-th friend’s magic number.
     

    Output
    For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y indicates the number of ways where Matt can win.
     

    Sample Input
    2 3 2 1 2 3 3 3 1 2 3
     

    Sample Output
    Case #1: 4 Case #2: 2
    Hint
    In the first sample, Matt can win by selecting: friend with number 1 and friend with number 2. The xor sum is 3. friend with number 1 and friend with number 3. The xor sum is 2. friend with number 2. The xor sum is 2. friend with number 3. The xor sum is 3. Hence, the answer is 4.
     

    Source

    解题思路:DP

      1 #include <stdio.h>

     2 #include <stdlib.h>
     3 #include <string.h>
     4 
     5 
     6 const int MAX = (1<<20);
     7 
     8 long long dp[41][MAX];
     9 int n, w, a[41];
    10 
    11 int main(){
    12     int T, i, j;
    13     int Case = 1;
    14     scanf("%d", &T);
    15     while(T--){
    16         scanf("%d %d", &n, &w);
    17         for(i = 0; i < n; i++){
    18             scanf("%d", &a[i]);
    19         }
    20         memset(dp, 0sizeof(dp));
    21         dp[0][0] = 1;
    22         long long ans = 0;
    23         if(w == 0){
    24             ans++;
    25         }
    26         for(i = 0; i < n; i++){
    27             for(j = 0; j < MAX; j++){
    28                 if(dp[i][j] == 0){
    29                     continue;
    30                 }
    31                 dp[i + 1][j] += dp[i][j];
    32                 int nj = j^a[i];
    33                 dp[i + 1][nj] += dp[i][j];
    34                 if(nj >= w){
    35                     ans += dp[i][j];
    36                 }
    37             }
    38         }
    39         printf("Case #%d: %I64d ", Case++, ans);
    40     }
    41     return 0;
    42 }
  • 相关阅读:
    关于词向量工作原理的理解
    LDA-线性判别分析(四)其他几个相关问题
    LDA-线性判别分析(三)推广到 Multi-classes 情形
    LDA-线性判别分析(一)预备知识
    LDA-线性判别分析(二)Two-classes 情形的数学推导
    为什么国内的网盘公司都在 TB 的级别上竞争,成本会不会太高?
    为什么我们喜欢用 sigmoid 这类 S 型非线性变换?
    UFLDL 教程学习笔记(四)主成分分析
    关于协方差矩阵的理解
    UFLDL 教程学习笔记(三)自编码与稀疏性
  • 原文地址:https://www.cnblogs.com/angle-qqs/p/4135898.html
Copyright © 2011-2022 走看看