zoukankan      html  css  js  c++  java
  • K

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.

     

    Input

    Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
     

    Output

    For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
     

    Sample Input

    2 3 5 7 15 6 4 10296 936 1287 792 1
     

    Sample Output

    105
    10296
     
    这道题就是要求多个数的最小公倍数;
    思路很简单,就是每两个数求他们的最小公倍数,然后用求出的最小公倍数与下一个数
     1 #include<stdio.h>
     2 int gcd(int a,int b)
     3 {
     4     if(b==0) return a;
     5     return gcd(b,a%b);
     6 }
     7 int main()
     8 {
     9     int t;
    10     int n,a,b,i;
    11     int cnt;
    12     scanf("%d",&t);
    13     while(t--)
    14     {
    15         scanf("%d",&n);
    16         cnt=a=1;
    17         for(i=1;i<=n;i++)
    18         {
    19             scanf("%d",&b);
    20             cnt=a/gcd(a,b)*b;
    21             a=cnt;
    22         }
    23         printf("%d
    ",cnt);
    24     }
    25     return 0;
    26 }
     
  • 相关阅读:
    bzoj 3993: [SDOI2015]星际战争
    bzoj 4066: 简单题
    bzoj 3611: [Heoi2014]大工程
    bzoj 3530: [Sdoi2014]数数
    bzoj 3529: [Sdoi2014]数表
    bzoj 3504: [Cqoi2014]危桥
    bzoj 3489: A simple rmq problem
    bzoj 3211: 花神游历各国
    bzoj 3196: Tyvj 1730 二逼平衡树
    bzoj 3172: [Tjoi2013]单词
  • 原文地址:https://www.cnblogs.com/angledamon/p/3924037.html
Copyright © 2011-2022 走看看