zoukankan      html  css  js  c++  java
  • (转)MapReduce Design Patterns(chapter 6 (part 1))(十一)

    Chapter 6. Metapatterns

    这种模式不是解决某个问题的,而是处理模式的关系的。可以理解为“模式的模式”。首先讨论的是job链,把几个模式联合起来解决复杂的,有多个阶段要处理的问题。第二个是job 合并,用相同的MapReduce job执行多个分析的优化,达到一箭多雕的目的。

    Job chaining

    理解job链接和对job链接的操作计划非常重要。很多人发现用单独一个MapReduce job不能解决一个问题。需要一连串的job需要跑,一些需要其它job的输出。一旦你开始熟悉用一些列MapReduce job解决问题时,你就进入了一个新的挑战阶段。

     

    Job链接是一个较难处理的过程,因为它不是MapReduce 框架里确定的特性。像hadoop这样的系统设计成处理一个MapReduce job会容易做,但处理一个有多个阶段要执行的job需要大量的工作量。需要考虑的有,某一阶段出错的job,要清楚掉中间输出。这一部分将会讨论几个不同的处理job 链接的方法。有一些对你的需求可能很适合,每一种都有利弊。

     

    几个框架和工具已经应运而生来填补这项应用。如果你做大量的工作流并且很复杂。你应该考虑使用其中一个。这里描述的方法是轻量级的,且需要实现为一种串行模式。Oozieapache的开源项目,有创建工作流并协调job运行的功能。创建job链是其中的一项工作,

    并且对操作运行hadoop MapReduce job非常有用。

     

    使用MapReduce的一个共同的缺陷是数据太小没必要分布式运行。如果你认为链接两个job是正确的选择,要考虑第一个job有多少输出量。如果有大量的输出数据,尽量使用第二个MapReduce job。很多时候,Job的输出文件很小就可以在单节点上高效的执行。这两种方式是:或者在job完成后,在驱动代码里通过文件系统加载数据,或者用某种脚本封装在一起。

     

    NoticeMapReduce链的主要问题是临时文件的大小。有时比较小,可能导致大量的map 任务。在非链式job中,reducer的数量通常依赖于接受到的数据量的大小而不是输出的数量。当使用链时,输出文件的大小就很重要,甚至reducer要运行很长时间。争取输出文件时分布式系统中一个块的大小。尝试不同的reducer的数量,并看看影响性能的瓶颈。

    另一种选择是使用CombineFileInputFormat来加载断断续续的输出数据。它会把小数据合成一个大的输入分片进行下面的mapper处理。

    With the Driver

    可能最简单的执行job链的方法是用主驱动代码来简单的驱动多个与具体job对应的驱动代码。没有特别的地方,java中用得很广泛。它不跟某种类或其它什么东西绑定。

    通过顺序调用job的驱动代码让job按指定的顺序执行。你必须确保第一个job的输出路径是第二个job的输入路径,可以通过共享临时目录变量的方式实现。

    在生产环境下,这个临时目录应该被清理,job完成后就不应该存在。缺乏规律的处理,会使你的集群资源很快用完。也要小心你要创建的临时数据量,因为他们要存储到文件系统中。

     

    用能很容易推断这种途径创建的链会比简单执行两个job所用时间长。注意跟踪临时目录,并视情况清除那些job不再用的数据。

    你可以使用Job.submit()代替Job.waitForCompletion()并行执行jobSubmit方法会立刻返回,并启动一个后台程序执行job。这允许一次执行多个job。使用Job.isComplete(),非阻塞的检查job是否完成,经常使用。

    另一件要注意的事情是job是否成功。仅仅知道job是否完成是不好的。需要检查成功与否。如果依赖job失败,应该停止整个链,而不是让它继续执行。

     

    很明显从软件工程的角度管理和维护这个执行过程是非常困难的。因为job链很复杂。这也是像jobControl或者oozie出现的原因。

    Job Chaining Examples

    Basic job chaining

    这个例子的目的是输出一对信息:声誉值和发帖数。这可以在一个MapReduce job里完成,但我们要根据发帖数的平均值把用户分成两部分。我们需要一个job统计数据,另一个基于平均值把用户分成两部分。这里将用到4中模式:数值聚合,计数,分箱,复制join

    使用框架的计数器计算发帖的平均数。第二个job中用户数据放入分布式缓存从而使输出数据带有用户声誉值。这种改进是为了适合下一个例子,计算用户的平均声誉值,分成两个箱(大于或小于平均值)。

     

    问题:给出stackOverflow 用户发帖数据,把用户分成两部分,根据高于或低于发帖数的平均值。并且丰富用户信息,加上从另一个数据集获得的声誉值,然后输出。

     

    Job one mapper。在我们看驱动代码之前,先理解下两个jobmapperreducerMapper通过从每条记录指定的OwnerUserId 属性的值记录user id,并作为job的输出keyvalue1。记录计数器也会增1.这个value随后会在驱动中用来计算用户的平均发帖数。AVERAGE_CALC_GROUP 是一个public static  驱动级别的string

    publicstaticclass UserIdCountMapper extends

           Mapper<Object, Text, Text, LongWritable> {

        publicstaticfinal String RECORDS_COUNTER_NAME = "Records";

        privatestaticfinal LongWritable ONE = new LongWritable(1);

        private Text outkey = new Text();

     

        publicvoid map(Object key, Text value, Context context)

               throws IOException, InterruptedException {

           Map<String, String> parsed = MRDPUtils.transformXmlToMap(value

                  .toString());

           String userId = parsed.get("OwnerUserId");

           if (userId != null) {

               outkey.set(userId);

               context.write(outkey, ONE);

               context.getCounter(AVERAGE_CALC_GROUP, RECORDS_COUNTER_NAME)

                      .increment(1);

           }

        }

    }

     

    Job one reducerReducer也相对简单。只是迭代输入values,计算sum值,作为值跟输入key作为key一同输出。一个不同的计数器会对每个reduce自增,为了计算平均值。

    publicstaticclass UserIdSumReducer extends

           Reducer<Text, LongWritable, Text, LongWritable> {

        publicstaticfinal String USERS_COUNTER_NAME = "Users";

        private LongWritable outvalue = new LongWritable();

     

        publicvoid reduce(Text key, Iterable<LongWritable> values,

               Context context) throws IOException, InterruptedException {

           // Increment user counter, as each reduce group represents one user

           context.getCounter(AVERAGE_CALC_GROUP, USERS_COUNTER_NAME)

                  .increment(1);

           int sum = 0;

           for (LongWritable value : values) {

               sum += value.get();

           }

           outvalue.set(sum);

           context.write(key, outvalue);

        }

    }

     

    Job two mapper。比前面的job稍复杂。这里做了几个不同的事情得到期望的输出。Setup阶段完成三件事情。发帖的平均值从job配置阶段设置的context对象中取出来。初始化MultipleOutputs,用来把输出写到不同的箱。最后,从DistributedCache解析用户数据,创建一个user id对应声誉值的map。用于数据丰富的目的。

     

    setup阶段相比这个map方法相对容易。解析输入值得到user id和发帖数。只需要用tab 分割输入value,取得前两个字段。然后设置输出keyuser id,输出值为发帖数和用户声誉值,靠tab分割。用户发帖数跟平均值作比较,对用户完成分箱。

     

    可选的第四个参数MultipleOutputs.write用于命名输出文件。一个常量用来指定用户的目录,根据用户的发帖数是在平均值之上或之下。目录里的文件名增加了额外的字符串“/part”,作为文件名的开始,然后框架会自动追加上-m-nnnnNnnn代表任务id。用这中命名,针对对两个箱会创建目录,并且每个目录里包含部分文件。这样做是便于下一个例子并行执行job时的输入输出的管理。

    最后,cleanup阶段关闭MultipleOutputs

    publicstaticclass UserIdBinningMapper extends

           Mapper<Object, Text, Text, Text> {

        publicstaticfinal String AVERAGE_POSTS_PER_USER = "avg.posts.per.user";

     

        publicstaticvoid setAveragePostsPerUser(Job job, double avg) {

           job.getConfiguration().set(AVERAGE_POSTS_PER_USER,

                  Double.toString(avg));

        }

     

        publicstaticdouble getAveragePostsPerUser(Configuration conf) {

           return Double.parseDouble(conf.get(AVERAGE_POSTS_PER_USER));

        }

     

        privatedoubleaverage = 0.0;

        private MultipleOutputs<Text, Text> mos = null;

        private Text outkey = new Text(), outvalue = new Text();

        private HashMap<String, String> userIdToReputation = new HashMap<String, String>();

     

        protectedvoid setup(Context context) throws IOException,

               InterruptedException {

           average = getAveragePostsPerUser(context.getConfiguration());

           mos = new MultipleOutputs<Text, Text>(context);

           Path[] files = DistributedCache.getLocalCacheFiles(context

                  .getConfiguration());

           // Read all files in the DistributedCache

           for (Path p : files) {

               BufferedReader rdr = new BufferedReader(new InputStreamReader(

                      new GZIPInputStream(new FileInputStream(new File(

                             p.toString())))));

               String line;

               // For each record in the user file

               while ((line = rdr.readLine()) != null) {

                  // Get the user ID and reputation

                  Map<String, String> parsed = MRDPUtils

                         .transformXmlToMap(line);

                  // Map the user ID to the reputation

                  userIdToReputation.put(parsed.get("Id"),

                         parsed.get("Reputation"));

               }

           }

        }

     

        publicvoid map(Object key, Text value, Context context)

               throws IOException, InterruptedException {

           String[] tokens = value.toString().split(" ");

           String userId = tokens[0];

           int posts = Integer.parseInt(tokens[1]);

           outkey.set(userId);

           outvalue.set((long) posts + " " + userIdToReputation.get(userId));

           if ((double) posts < average) {

               mos.write(MULTIPLE_OUTPUTS_BELOW_NAME, outkey, outvalue,

                      MULTIPLE_OUTPUTS_BELOW_NAME + "/part");

           } else {

               mos.write(MULTIPLE_OUTPUTS_ABOVE_NAME, outkey, outvalue,

                      MULTIPLE_OUTPUTS_ABOVE_NAME + "/part");

           }

        }

     

        protectedvoid cleanup(Context context) throws IOException,

               InterruptedException {

           mos.close();

        }

    }

     

    Driver code。下面看最复杂的驱动代码。分解为两部分讨论:第一个job和第二个job。第一个job解析命令行参数创建合适的输入输出目录。创建的临时目录会在job链的最后由驱动代码删掉。

     

    Notice:输出目录名字附加一个string作为中间输出目录。这在大多数情况下是合适的,但如果对中间目录有一个命名约定来避免冲突会更好。Job提交时如果输出目录已经存在,job将不会启动。

    publicstaticvoid main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        Path postInput = new Path(args[0]);

        Path userInput = new Path(args[1]);

        Path outputDirIntermediate = new Path(args[2] + "_int");

        Path outputDir = new Path(args[2]);

        // Setup first job to counter user posts

        Job countingJob = new Job(, "JobChaining-Counting");

        countingJob.setJarByClass(JobChainingDriver.class);

        // Set our mapper and reducer, we can use the API's long sum reducer for

        // a combiner!

        countingJob.setMapperClass(UserIdCountMapper.class);

        countingJob.setCombinerClass(LongSumReducer.class);

        countingJob.setReducerClass(UserIdSumReducer.class);

        countingJob.setOutputKeyClass(Text.class);

        countingJob.setOutputValueClass(LongWritable.class);

        countingJob.setInputFormatClass(TextInputFormat.class);

        TextInputFormat.addInputPath(countingJob, postInput);

        countingJob.setOutputFormatClass(TextOutputFormat.class);

        TextOutputFormat.setOutputPath(countingJob, outputDirIntermediate);

        // Execute job and grab exit code

        int code = countingJob.waitForCompletion(true) ? 0 : 1;

       。。。

     

    执行第二个job之前要检测第一个job是否成功。这看起来足够简单,但对于更复杂的job链,检测是比较烦人的。第二个job配置之前,从第一个job抽取代表平均发帖数的计数器的值,加到job配置里。然后设置mapper并禁用reducer阶段。另外的关键部分要注意的是MultipleOutputsDistributedCache的配置。然后job执行

     

    最后,最终要的是成功或失败,中间输出目录被清除。这是一个重要并经常被忽视的阶段。留下中间输出目录会很快的填满集群,需要你手动删除这些目录。不需要的就删掉。

    if (code == 0) {

        // Calculate the average posts per user by getting counter values

        double numRecords = (double) countingJob

        .getCounters()

        .findCounter(AVERAGE_CALC_GROUP,

        UserIdCountMapper.RECORDS_COUNTER_NAME).getValue();

        double numUsers = (double) countingJob

        .getCounters()

        .findCounter(AVERAGE_CALC_GROUP,

        UserIdSumReducer.USERS_COUNTER_NAME).getValue();

        double averagePostsPerUser = numRecords / numUsers;

        // Setup binning job

        Job binningJob = new Job(new Configuration(), "JobChaining-Binning");

        binningJob.setJarByClass(JobChainingDriver.class);

        // Set mapper and the average posts per user

        binningJob.setMapperClass(UserIdBinningMapper.class);

        UserIdBinningMapper.setAveragePostsPerUser(binningJob,

        averagePostsPerUser);

        binningJob.setNumReduceTasks(0);

        binningJob.setInputFormatClass(TextInputFormat.class);

        TextInputFormat.addInputPath(binningJob, outputDirIntermediate);

        // Add two named outputs for below/above average

        MultipleOutputs.addNamedOutput(binningJob,

        MULTIPLE_OUTPUTS_BELOW_NAME, TextOutputFormat.class,

        Text.class, Text.class);

        MultipleOutputs.addNamedOutput(binningJob,

        MULTIPLE_OUTPUTS_ABOVE_NAME, TextOutputFormat.class,

        Text.class, Text.class);

        MultipleOutputs.setCountersEnabled(binningJob, true);

        TextOutputFormat.setOutputPath(binningJob, outputDir);

        // Add the user files to the DistributedCache

        FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);

        for (FileStatus status : userFiles) {

        DistributedCache.addCacheFile(status.getPath().toUri(),

        binningJob.getConfiguration());

        }

        // Execute job and grab exit code

        code = binningJob.waitForCompletion(true) ? 0 : 1;

        }

        // Clean up the intermediate output

        FileSystem.get(conf).delete(outputDirIntermediate, true);

        System.exit(code);

     

    Parallel job chaining

    并行job链的驱动跟前面例子的相似。唯一大的改进是jobs被并行提交然后监控它们直到完成。本例中的两个job是独立的(当然,用到了前面例子的输出)。这增加了更好利用集群资源的好处,能同时运行两个job

     

    问题:用到前面例子产生的分箱的用户数据,在两个箱上同时跑job计算平均声誉值。

     

    Mapper codeMapper分割输入值为字符串数组。第三个索引值是该用户的声誉值。这个值是随着唯一key输出的。为了分组所有的声誉值计算平均值,这个key通过所有的map任务共享,nullwritable能用,但我们需要一个有意义的表示。

     

    Notice:对非常大的数据集这个执行会很昂贵。因为只有一个reducer负责所有的中间键值对通过网络传输。从一个节点连续读数据带来的好处是,输入分片被并行读,reducer数量可配置。

    publicstaticclass AverageReputationMapper extends

           Mapper<LongWritable, Text, Text, DoubleWritable> {

        privatestaticfinal Text GROUP_ALL_KEY = new Text(

               "Average Reputation:");

        private DoubleWritable outvalue = new DoubleWritable();

     

        protectedvoid map(LongWritable key, Text value, Context context)

               throws IOException, InterruptedException {

           // Split the line into tokens

           String[] tokens = value.toString().split(" ");

           // Get the reputation from the third column

           double reputation = Double.parseDouble(tokens[2]);

           // Set the output value and write to context

           outvalue.set(reputation);

           context.write(GROUP_ALL_KEY, outvalue);

        }

    }

     

    Reducer codeReducer简单的迭代声誉值,求声誉值和,求用户个数,然后相除得到平均值,平均值随着输入key一同输出。

    publicstaticclass AverageReputationReducer extends

           Reducer<Text, DoubleWritable, Text, DoubleWritable> {

        private DoubleWritable outvalue = new DoubleWritable();

     

        protectedvoid reduce(Text key, Iterable<DoubleWritable> values,

               Context context) throws IOException, InterruptedException {

           double sum = 0.0;

           double count = 0;

           for (DoubleWritable dw : values) {

               sum += dw.get();

               ++count;

           }

           outvalue.set(sum / count);

           context.write(key, outvalue);

        }

    }

     

    Driver code。驱动代码解析命令行参数为这两个job得到输入输出目录。调用帮助方法提交job的配置,下面会看到。两个job对象会返回,并监控直到job的完成。只要其中一个job仍在运行,驱动就会再休息5秒。两个都完成以后,检查成功或失败,打印相关log信息。Job成功,则返回退出代码。

    publicstaticvoid main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        Path belowAvgInputDir = new Path(args[0]);

        Path aboveAvgInputDir = new Path(args[1]);

        Path belowAvgOutputDir = new Path(args[2]);

        Path aboveAvgOutputDir = new Path(args[3]);

        Job belowAvgJob = submitJob(conf, belowAvgInputDir, belowAvgOutputDir);

        Job aboveAvgJob = submitJob(conf, aboveAvgInputDir, aboveAvgOutputDir);

        // While both jobs are not finished, sleep

        while (!belowAvgJob.isComplete() || !aboveAvgJob.isComplete()) {

           Thread.sleep(5000);

        }

        if (belowAvgJob.isSuccessful()) {

           System.out.println("Below average job completed successfully!");

        } else {

           System.out.println("Below average job failed!");

        }

        if (aboveAvgJob.isSuccessful()) {

           System.out.println("Above average job completed successfully!");

        } else {

           System.out.println("Above average job failed!");

        }

        System.exit(belowAvgJob.isSuccessful() && aboveAvgJob.isSuccessful() ? 0: 1);

    }

    帮助方法可以配置每个job,看起来很标准,除了使用job.Submit而不是Job.waitForCompletion。这样会提交job立刻返回,允许下面的代码继续执行。正如我们看到的,返回的jobmain方法被监控直到完成。

    privatestatic Job submitJob(Configuration conf, Path inputDir,

           Path outputDir) throws Exception {

        Job job = new Job(conf, "ParallelJobs");

        job.setJarByClass(ParallelJobs.class);

        job.setMapperClass(AverageReputationMapper.class);

        job.setReducerClass(AverageReputationReducer.class);

        job.setOutputKeyClass(Text.class);

        job.setOutputValueClass(DoubleWritable.class);

        job.setInputFormatClass(TextInputFormat.class);

        TextInputFormat.addInputPath(job, inputDir);

        job.setOutputFormatClass(TextOutputFormat.class);

        TextOutputFormat.setOutputPath(job, outputDir);

        // Submit job and immediately return, rather than waiting for completion

        job.submit();

        return job;

    }

     

    With Shell Scripting

    这种方法跟前面使用主驱动来启动单独的job驱动代码类似,除了使用脚本语言。在shell 脚本内,链中的每个job都可以用命令行指定的方式单独的启动。

     

    这里有几个主要的益处和一对小的负面影响。一个好处是不用编译代码就能改变job流,因为驱动使用脚本语言,而不是java。对于失败可能性大的job,需要容易手动重新运行或修复失败的job。也可以把已经用于生产的job通过命令行调用,不通过脚本。另一个益处是shell脚本可以跟服务,系统,和非java写的工具交互。例如,本章随后讨论的输出的后处理,很自然的用sedawk处理,很少用java

     

    Notice:用脚本封装MapReduce job,无论是一个java MapReducepig job或其它的,都有几个好处:后处理,数据流,数据准备,添加额外日志等等。

     

    通常使用脚本能快速把新job和已有的job链起来。对健壮的程序,构建基于驱动的链机制能改善跟hadoop的接口,且更有意义。

     

    Bash example

    本例中,我们使用bash shell把基本的job 链绑在一起并行执行。脚本分成两部分:设置job执行需要的变量,然后执行。

     

    Bash script。输入输出保存在变量里用来创建几个可执行的命令。跑这两个job需要两个命令,cat输出到显示器,然后清除输出。

     

    #!/bin/bash

    JAR_FILE="mrdp.jar"

    JOB_CHAIN_CLASS="mrdp.ch6.JobChainingDriver"

    PARALLEL_JOB_CLASS="mrdp.ch6.ParallelJobs"

    HADOOP="$( which hadoop )"

    POST_INPUT="posts"

    USER_INPUT="users"

    JOBCHAIN_OUTDIR="jobchainout"

    BELOW_AVG_INPUT="${JOBCHAIN_OUTDIR}/belowavg"

    ABOVE_AVG_INPUT="${JOBCHAIN_OUTDIR}/aboveavg"

    BELOW_AVG_REP_OUTPUT="belowavgrep"

    ABOVE_AVG_REP_OUTPUT="aboveavgrep"

    JOB_1_CMD="${HADOOP} jar ${JAR_FILE} ${JOB_CHAIN_CLASS} ${POST_INPUT}

    ${USER_INPUT} ${JOBCHAIN_OUTDIR}"

    JOB_2_CMD="${HADOOP} jar ${JAR_FILE} ${PARALLEL_JOB_CLASS} ${BELOW_AVG_INPUT}

    ${ABOVE_AVG_INPUT} ${BELOW_AVG_REP_OUTPUT} ${ABOVE_AVG_REP_OUTPUT}"

    CAT_BELOW_OUTPUT_CMD="${HADOOP} fs -cat ${BELOW_AVG_REP_OUTPUT}/part-*"

    CAT_ABOVE_OUTPUT_CMD="${HADOOP} fs -cat ${ABOVE_AVG_REP_OUTPUT}/part-*"

    RMR_CMD="${HADOOP} fs -rmr ${JOBCHAIN_OUTDIR} ${BELOW_AVG_REP_OUTPUT}

    ${ABOVE_AVG_REP_OUTPUT}"

    LOG_FILE="avgrep_`date +%s`.txt"

     

     

    下一部分脚本内容是在运行之前执行若干echo命令。然后执行第一个job,查看返回值判断是否失败。如果失败,删除输出目录,脚本退出执行。成功,执行第二个job。如果第二个job成功完成,每个job的输出写到日志文件并且输出被删除。额外的输出也是不需要的,因为输出文件只有一行数据,保存在日志文件要比hdfs更好。

    {

    echo ${JOB_1_CMD}

    ${JOB_1_CMD}

    if [ $? -ne 0 ]

    then

    echo "First job failed!"

    echo ${RMR_CMD}

    ${RMR_CMD}

    exit $?

    fi

    echo ${JOB_2_CMD}

    ${JOB_2_CMD}

    if [ $? -ne 0 ]

    then

    echo "Second job failed!"

    echo ${RMR_CMD}

    ${RMR_CMD}

    exit $?

    fi

    echo ${CAT_BELOW_OUTPUT_CMD}

    ${CAT_BELOW_OUTPUT_CMD}

    echo ${CAT_ABOVE_OUTPUT_CMD}

    ${CAT_ABOVE_OUTPUT_CMD}

    echo ${RMR_CMD}

    ${RMR_CMD}

    exit 0

    } &> ${LOG_FILE}

     

    Sample run。运行输出如下,省略了MapReduce的一些信息。

     

    /home/mrdp/hadoop/bin/hadoop jar mrdp.jar mrdp.ch6.JobChainingDriver posts

    users jobchainout

    12/06/10 15:57:43 INFO input.FileInputFormat: Total input paths to process : 5

    12/06/10 15:57:43 INFO util.NativeCodeLoader: Loaded the native-hadoop library

    12/06/10 15:57:43 WARN snappy.LoadSnappy: Snappy native library not loaded

    12/06/10 15:57:44 INFO mapred.JobClient: Running job: job_201206031928_0065

    ...

    12/06/10 15:59:14 INFO mapred.JobClient: Job complete: job_201206031928_0065

    ...

    12/06/10 15:59:15 INFO mapred.JobClient: Running job: job_201206031928_0066

    ...

    12/06/10 16:02:02 INFO mapred.JobClient: Job complete: job_201206031928_0066

    /home/mrdp/hadoop/bin/hadoop jar mrdp.jar mrdp.ch6.ParallelJobs

    jobchainout/belowavg jobchainout/aboveavg belowavgrep aboveavgrep

    12/06/10 16:02:08 INFO input.FileInputFormat: Total input paths to process : 1

    12/06/10 16:02:08 INFO util.NativeCodeLoader: Loaded the native-hadoop library

    12/06/10 16:02:08 WARN snappy.LoadSnappy: Snappy native library not loaded

    12/06/10 16:02:12 INFO input.FileInputFormat: Total input paths to process : 1

    Below average job completed successfully!

    Above average job completed successfully!

    /home/mrdp/hadoop/bin/hadoop fs -cat belowavgrep/part-*

    Average Reputation: 275.36385831014724

    /home/mrdp/hadoop/bin/hadoop fs -cat aboveavgrep/part-*

    Average Reputation: 2375.301960784314

    /home/mrdp/hadoop/bin/hadoop fs -rmr jobchainout belowavgrep aboveavgrep

    Deleted hdfs://localhost:9000/user/mrdp/jobchainout

    Deleted hdfs://localhost:9000/user/mrdp/belowavgrep

    Deleted hdfs://localhost:9000/user/mrdp/aboveavgrep

     

    With JobControl

    JobControlControlledJob类组成一个MapReduce 链的系统。并有一些很好的特性,例如跟踪链的状态,满足依赖关系时自动启动job。使用JobControl处理job链是正确的选择,但有时对简单的程序较重量级。

     

    使用JobControl,开始要用ControlledJob封装你的job。做法相对简单:创建job,并创建ControlledJob,它能接收jobConfiguration,和一系列的依赖作为参数。然后把job一个一个加到JobControl对象。

     

    也需要跟踪临时数据并在最后或失败时清除。

     

    Job control example

    本例在驱动中使用JobControl,让我们把前面两个基本job链和并行job链组合起来执行。我们已经熟悉了mapperreducer代码,所以这里不需要叙述了。Job配置的驱动代码是主要展示的。它使用基本job链提交第一个job,然后用JobControl执行剩下的一个job链中的job和两个并行的job。初始job不加到JobControl,因为需要在中间过程中使用第一个job的计数器配置第二个job的阶段要打断控制。

     

    所有的job在执行整个job链时必须完成配置,可能有局限性。

     

     

    Main method。让我们看一下main方法。解析命令行参数创建四个job需要的所有路径。当命名变量以了解我们的数据流时要小心。然后第一个job通过帮助方法配置并执行。这个job完成后,通过配置方法配置三个ControlledJob对象。配置方法决定了job用那个mapper类,reducer类等等。

     

    binningControlledJob没有依赖,当然要验证前一个job是否执行成功。下面的两个job都依赖binningControlledJob。在binning job执行成功之前,这两个job不会执行。如果没执行成功,这两个job也不会执行。

     

    这三个ControlledJob都加到JobControl对象,然后运行。JobControl.run的调用会阻塞,直到这一组job的完成。然后检查是否有job失败并设置退出代码。退出之前要清除中间输出目录。

     

    publicstaticvoid main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        Path postInput = new Path(args[0]);

        Path userInput = new Path(args[1]);

        Path countingOutput = new Path(args[3] + "_count");

        Path binningOutputRoot = new Path(args[3] + "_bins");

        Path binningOutputBelow = new Path(binningOutputRoot + "/"

               + JobChainingDriver.MULTIPLE_OUTPUTS_BELOW_NAME);

        Path binningOutputAbove = new Path(binningOutputRoot + "/"

               + JobChainingDriver.MULTIPLE_OUTPUTS_ABOVE_NAME);

        Path belowAverageRepOutput = new Path(args[2]);

        Path aboveAverageRepOutput = new Path(args[3]);

        Job countingJob = getCountingJob(conf, postInput, countingOutput);

        int code = 1;

        if (countingJob.waitForCompletion(true)) {

           ControlledJob binningControlledJob = new ControlledJob(

                   getBinningJobConf(countingJob, conf, countingOutput,

                         userInput, binningOutputRoot));

           ControlledJob belowAvgControlledJob = new ControlledJob(

                  getAverageJobConf(conf, binningOutputBelow,

                         belowAverageRepOutput));

           belowAvgControlledJob.addDependingJob(binningControlledJob);

           ControlledJob aboveAvgControlledJob = new ControlledJob(

                  getAverageJobConf(conf, binningOutputAbove,

                         aboveAverageRepOutput));

           aboveAvgControlledJob.addDependingJob(binningControlledJob);

           JobControl jc = new JobControl("AverageReputation");

           jc.addJob(binningControlledJob);

           jc.addJob(belowAvgControlledJob);

           jc.addJob(aboveAvgControlledJob);

           jc.run();

           code = jc.getFailedJobList().size() == 0 ? 0 : 1;

        }

        FileSystem fs = FileSystem.get(conf);

        fs.delete(countingOutput, true);

        fs.delete(binningOutputRoot, true);

        System.exit(code);

    }

     

    Helper methods。下面是用到的帮助方法,用来创建具体的job或配置对象。ControlledJob能使用这两个类中的任意一个创建。这里有三个独立的方法,最后一个方法会使用过两次创建相同的两个并行job。输入输出在所有job中都是不同的。

    publicstatic Job getCountingJob(Configuration conf, Path postInput,

           Path outputDirIntermediate) throws IOException {

        // Setup first job to counter user posts

        Job countingJob = new Job(conf, "JobChaining-Counting");

        countingJob.setJarByClass(JobChainingDriver.class);

        // Set our mapper and reducer, we can use the API's long sum reducer for

        // a combiner!

        countingJob.setMapperClass(UserIdCountMapper.class);

        countingJob.setCombinerClass(LongSumReducer.class);

        countingJob.setReducerClass(UserIdSumReducer.class);

        countingJob.setOutputKeyClass(Text.class);

        countingJob.setOutputValueClass(LongWritable.class);

        countingJob.setInputFormatClass(TextInputFormat.class);

        TextInputFormat.addInputPath(countingJob, postInput);

        countingJob.setOutputFormatClass(TextOutputFormat.class);

        TextOutputFormat.setOutputPath(countingJob, outputDirIntermediate);

        return countingJob;

    }

     

    publicstatic Configuration getBinningJobConf(Job countingJob,

           Configuration conf, Path jobchainOutdir, Path userInput,

           Path binningOutput) throws IOException {

        // Calculate the average posts per user by getting counter values

        double numRecords = (double) countingJob

               .getCounters()

               .findCounter(JobChainingDriver.AVERAGE_CALC_GROUP,

                      UserIdCountMapper.RECORDS_COUNTER_NAME).getValue();

        double numUsers = (double) countingJob

               .getCounters()

               .findCounter(JobChainingDriver.AVERAGE_CALC_GROUP,

                      UserIdSumReducer.USERS_COUNTER_NAME).getValue();

        double averagePostsPerUser = numRecords / numUsers;

        // Setup binning job

        Job binningJob = new Job(conf, "JobChaining-Binning");

        binningJob.setJarByClass(JobChainingDriver.class);

        // Set mapper and the average posts per user

        binningJob.setMapperClass(UserIdBinningMapper.class);

        UserIdBinningMapper.setAveragePostsPerUser(binningJob,

               averagePostsPerUser);

        binningJob.setNumReduceTasks(0);

        binningJob.setInputFormatClass(TextInputFormat.class);

        TextInputFormat.addInputPath(binningJob, jobchainOutdir);

        // Add two named outputs for below/above average

        MultipleOutputs.addNamedOutput(binningJob,

               JobChainingDriver.MULTIPLE_OUTPUTS_BELOW_NAME,

               TextOutputFormat.class, Text.class, Text.class);

        MultipleOutputs.addNamedOutput(binningJob,

               JobChainingDriver.MULTIPLE_OUTPUTS_ABOVE_NAME,

               TextOutputFormat.class, Text.class, Text.class);

        MultipleOutputs.setCountersEnabled(binningJob, true);

        // Configure multiple outputs

        conf.setOutputFormat(NullOutputFormat.class);

        FileOutputFormat.setOutputPath(conf, outputDir);

        MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_ABOVE_5000,

               TextOutputFormat.class, Text.class, LongWritable.class);

        MultipleOutputs.addNamedOutput(conf, MULTIPLE_OUTPUTS_BELOW_5000,

               TextOutputFormat.class, Text.class, LongWritable.class);

        // Add the user files to the DistributedCache

        FileStatus[] userFiles = FileSystem.get(conf).listStatus(userInput);

        for (FileStatus status : userFiles) {

           DistributedCache.addCacheFile(status.getPath().toUri(),

                  binningJob.getConfiguration());

        }

        // Execute job and grab exit code

        return binningJob.getConfiguration();

    }

     

    publicstatic Configuration getAverageJobConf(Configuration conf,

           Path averageOutputDir, Path outputDir) throws IOException {

        Job averageJob = new Job(conf, "ParallelJobs");

        averageJob.setJarByClass(ParallelJobs.class);

        averageJob.setMapperClass(AverageReputationMapper.class);

        averageJob.setReducerClass(AverageReputationReducer.class);

        averageJob.setOutputKeyClass(Text.class);

        averageJob.setOutputValueClass(DoubleWritable.class);

        averageJob.setInputFormatClass(TextInputFormat.class);

        TextInputFormat.addInputPath(averageJob, averageOutputDir);

        averageJob.setOutputFormatClass(TextOutputFormat.class);

        TextOutputFormat.setOutputPath(averageJob, outputDir);

        // Execute job and grab exit code

        return averageJob.getConfiguration();

    }

     

    摘录地址:http://blog.csdn.net/cuirong1986/article/details/8492804

  • 相关阅读:
    snmp
    iOS 精确定时器
    iOS 用命令实现简单的打包过程
    OpenSSH
    IOS 逆向工程之砸壳
    UNIX相关知识
    BSD历史
    linux grep命令
    为什么国外程序员爱用Mac?
    iOS xcuserdata
  • 原文地址:https://www.cnblogs.com/anny-1980/p/3663377.html
Copyright © 2011-2022 走看看