zoukankan      html  css  js  c++  java
  • 二分查找法的实现和应用汇总

    From:http://www.cnblogs.com/ider/archive/2012/04/01/binary_search.html

    在学习算法的过程中,我们除了要了解某个算法的基本原理、实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度。在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度。

    时间复杂度按优劣排差不多集中在:

    O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n)

    到目前位置,似乎我学到的算法中,时间复杂度是O(log n),好像就数二分查找法,其他的诸如排序算法都是 O(n log n)或者O(n2)。但是也正是因为有二分的 O(log n), 才让很多 O(n2)缩减到只要O(n log n)。

    关于二分查找法

    二分查找法主要是解决在“一堆数中找出指定的数”这类问题。

    而想要应用二分查找法,这“一堆数”必须有一下特征:

    • 存储在数组中
    • 有序排列

    所以如果是用链表存储的,就无法在其上应用二分查找法了。(曽在面试被问二分查找法可以什么数据结构上使用:数组?链表?)

    至于是顺序递增排列还是递减排列,数组中是否存在相同的元素都不要紧。不过一般情况,我们还是希望并假设数组是递增排列,数组中的元素互不相同

    二分查找法的基本实现

    二分查找法在算法家族大类中属于“分治法”,分治法基本都可以用递归来实现的,二分查找法的递归实现如下:

    复制代码
    int bsearch(int array[], int low, int high, int target)
    {
    if (low > high) return -1;

    int mid = (low + high)/2;
    if (array[mid]> target)
    return binarysearch(array, low, mid -1, target);
    if (array[mid]< target)
    return binarysearch(array, mid+1, high, target);

    //if (midValue == target)
    return mid;
    }
    复制代码

    不过所有的递归都可以自行定义stack来解递归,所以二分查找法也可以不用递归实现,而且它的非递归实现甚至可以不用栈,因为二分的递归其实是尾递归,它不关心递归前的所有信息。

    复制代码
    int bsearchWithoutRecursion(int array[], int low, int high, int target)
    {
    while(low <= high)
    {
    int mid = (low + high)/2;
    if (array[mid] > target)
    high = mid - 1;
    else if (array[mid] < target)
    low = mid + 1;
    else //find the target
    return mid;
    }
    //the array does not contain the target
    return -1;
    }
    复制代码

    只用小于比较(<)实现二分查找法

    在前面的二分查找实现中,我们既用到了小于比较(<)也用到了大于比较(>),也可能还需要相等比较(==)。

    而实际上我们只需要一个小于比较(<)就可以。因为错逻辑上讲a>b和b<a应该是有相当的逻辑值;而a==b则是等价于 !((a<b)||(b<a)),也就是说a既不小于b,也不大于b。

    当然在程序的世界里, 这种关系逻辑其实并不是完全正确。另外,C++还允许对对象进行运算符的重载,因此开发人员完全可以随意设计和实现这些关系运算符的逻辑值。

    不过在整型数据面前,这些关系运算符之间的逻辑关系还是成立的,而且在开发过程中,我们还是会遵循这些逻辑等价关系来重载关系运算符。

    干嘛要搞得那么羞涩,只用一个关系运算符呢?因为这样可以为二分查找法写一个template,又能减少对目标对象的要求。模板会是这样的:

    复制代码
    template <typename T, typename V>
    inline int BSearch(T& array, int low, int high, V& target)
    {
    while(!(high < low))
    {
    int mid = (low + high)/2;
    if (target < array[mid])
    high = mid - 1;
    else if (array[mid] < target)
    low = mid + 1;
    else //find the target
    return mid;
    }
    //the array does not contain the target
    return -1;
    }
    复制代码

    我们只需要求target的类型V有重载小于运算符就可以。而对于V的集合类型T,则需要有[]运算符的重载。当然其内部实现必须是O(1)的复杂度,否则也就失去了二分查找的效率。

    用二分查找法找寻边界值

    之前的都是在数组中找到一个数要与目标相等,如果不存在则返回-1。我们也可以用二分查找法找寻边界值,也就是说在有序数组中找到“正好大于(小于)目标数”的那个数。

    用数学的表述方式就是:

         在集合中找到一个大于(小于)目标数t的数x,使得集合中的任意数要么大于(小于)等于x,要么小于(大于)等于t。

    举例来说:

    给予数组和目标数

    int array = {2, 3, 5, 7, 11, 13, 17};
    int target = 7;

    那么上界值应该是11,因为它“刚刚好”大于7;下届值则是5,因为它“刚刚好”小于7。

    用二分查找法找寻上届

    复制代码
    //Find the fisrt element, whose value is larger than target, in a sorted array 
    int BSearchUpperBound(int array[], int low, int high, int target)
    {
    //Array is empty or target is larger than any every element in array
    if(low > high || target >= array[high]) return -1;

    int mid = (low + high) / 2;
    while (high > low)
    {
    if (array[mid] > target)
    high = mid;
    else
    low = mid + 1;

    mid = (low + high) / 2;
    }

    return mid;
    }
    复制代码

    与精确查找不同之处在于,精确查找分成三类:大于小于等于(目标数)。而界限查找则分成了两类:大于不大于

    如果当前找到的数大于目标数时,它可能就是我们要找的数,所以需要保留这个索引,也因此if (array[mid] > target)时 high=mid; 而没有减1。

    用二分查找法找寻下届

    复制代码
    //Find the last element, whose value is less than target, in a sorted array 
    int BSearchLowerBound(int array[], int low, int high, int target)
    {
    //Array is empty or target is less than any every element in array
    if(high < low || target <= array[low]) return -1;

    int mid = (low + high + 1) / 2; //make mid lean to large side
    while (low < high)
    {
    if (array[mid] < target)
    low = mid;
    else
    high = mid - 1;

    mid = (low + high + 1) / 2;
    }

    return mid;
    }
    复制代码

    下届寻找基本与上届相同,需要注意的是在取中间索引时,使用了向上取整。若同之前一样使用向下取整,那么当low == high-1,而array[low] 又小于 target时就会形成死循环。因为low无法往上爬超过high。

    这两个实现都是找严格界限,也就是要大于或者小于。如果要找松散界限,也就是找到大于等于或者小于等于的值(即包含自身),只要对代码稍作修改就好了:

    去掉判断数组边界的等号:

    target >= array[high]改为 target > array[high]

    在与中间值的比较中加上等号:

    array[mid] > target改为array[mid] >= target

     

    用二分查找法找寻区域

    之前我们使用二分查找法时,都是基于数组中的元素各不相同。假如存在重复数据,而数组依然有序,那么我们还是可以用二分查找法判别目标数是否存在。不过,返回的index就只能是随机的重复数据中的某一个。

    此时,我们会希望知道有多少个目标数存在。或者说我们希望数组的区域。

    结合前面的界限查找,我们只要找到目标数的严格上届和严格下届,那么界限之间(不包括界限)的数据就是目标数的区域了。

    复制代码
    //return type: pair<int, int>
    //the fisrt value indicate the begining of range,
    //the second value indicate the end of range.
    //If target is not find, (-1,-1) will be returned
    pair<int, int> SearchRange(int A[], int n, int target)
    {
    pair<int, int> r(-1, -1);
    if (n <= 0) return r;

    int lower = BSearchLowerBound(A, 0, n-1, target);
    lower = lower + 1; //move to next element

    if(A[lower] == target)
    r.first = lower;
    else //target is not in the array
    return r;

    int upper = BSearchUpperBound(A, 0, n-1, target);
    upper = upper < 0? (n-1):(upper - 1); //move to previous element

    //since in previous search we had check whether the target is
    //in the array or not, we do not need to check it here again
    r.second = upper;

    return r;
    }
    复制代码

    它的时间复杂度是两次二分查找所用时间的和,也就是O(log n) + O(log n),最后还是O(log n)。

    在轮转后的有序数组上应用二分查找法

    之前我们说过二分法是要应用在有序的数组上,如果是无序的,那么比较和二分就没有意义了。

    不过还有一种特殊的数组上也同样可以应用,那就是“轮转后的有序数组(Rotated Sorted Array)”。它是有序数组,取期中某一个数为轴,将其之前的所有数都轮转到数组的末尾所得。比如{7, 11, 13, 17, 2, 3, 5}就是一个轮转后的有序数组。非严格意义上讲,有序数组也属于轮转后的有序数组——我们取首元素作为轴进行轮转。

    下边就是二分查找法在轮转后的有序数组上的实现(假设数组中不存在相同的元素)

    复制代码
    int SearchInRotatedSortedArray(int array[], int low, int high, int target) 
    {
    while(low <= high)
    {
    int mid = (low + high) / 2;
    if (target < array[mid])
    if (array[mid] < array[high])//the higher part is sorted
    high = mid - 1; //the target would only be in lower part
    else //the lower part is sorted
    if(target < array[low])//the target is less than all elements in low part
    low = mid + 1;
    else
    high = mid - 1;

    else if(array[mid] < target)
    if (array[low] < array[mid])// the lower part is sorted
    low = mid + 1; //the target would only be in higher part
    else //the higher part is sorted
    if (array[high] < target)//the target is larger than all elements in higher part
    high = mid - 1;
    else
    low = mid + 1;
    else //if(array[mid] == target)
    return mid;
    }

    return -1;
    }
    复制代码

    对比普通的二分查找法,为了确定目标数会落在二分后的那个部分,我们需要更多的判定条件。但是我们还是实现了O(log n)的目标。

    二分查找法的缺陷

    二分查找法的O(log n)让它成为十分高效的算法。不过它的缺陷却也是那么明显的。就在它的限定之上:

    有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组

    数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。

    解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是自平衡二叉查找树了,自能高效的(O(n log n))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。

  • 相关阅读:
    2021,6,10 xjzx 模拟考试
    平衡树(二)——Treap
    AtCoder Beginner Contest 204 A-E简要题解
    POJ 2311 Cutting Game 题解
    Codeforces 990G GCD Counting 题解
    NOI2021 SDPTT D2T1 我已经完全理解了 DFS 序线段树 题解
    第三届山东省青少年创意编程与智能设计大赛总结
    Luogu P6042 「ACOI2020」学园祭 题解
    联合省选2021 游记
    Codeforces 1498E Two Houses 题解 —— 如何用结论吊打标算
  • 原文地址:https://www.cnblogs.com/anorthwolf/p/2983080.html
Copyright © 2011-2022 走看看