zoukankan      html  css  js  c++  java
  • 使用TensorFlow给花朵🌺分类

    第一步:准备好需要的库

    • tensorflow-gpu  1.8.0
    • opencv-python     3.3.1
    • numpy
    • skimage
    • os
    • pillow

     第二步:准备数据集:

     链接:https://pan.baidu.com/s/1Kbz_UaRhAfhlweFY28R8Sw 密码:iym3

    本次使用了花朵分类的数据集,总共有5类

    每类里面有不同形态的同一类花朵

    在下载完数据集之后,我们对数据集进行预处理:

    from skimage import io, transform
    import os
    import numpy as np
    
    # 将所有的图片resize成100*100
    w = 100
    h = 100
    c = 3
    
    
    # 读取图片
    def read_img(path):
        imgs = []
        labels = []
        classs = os.listdir(path)
    
        for idx, folder in enumerate(classs):
            cate = os.path.join(path, folder)
            for im in os.listdir(cate):
                img_path =os.path.join(cate, im)
                # print('reading the images:%s' % (img_path))
                img = io.imread(img_path)
                img = transform.resize(img, (w, h))
                # with open('tests.txt', 'a') as f:
                #     f.write(img_path+'_'+str(idx)+'
    ')
                imgs.append(img)
                labels.append(idx)
        return np.asarray(imgs, np.float32), np.asarray(labels, np.int32)
    
    
    
    def suffer(data, label):
        # 打乱顺序
        num_example = data.shape[0]
        arr = np.arange(num_example)
        np.random.shuffle(arr)
        data = data[arr]
        label = label[arr]
    
        # 将所有数据分为训练集和验证集
        ratio = 0.8
        s = np.int(num_example * ratio)
        x_train = data[:s]
        y_train = label[:s]
        x_val = data[s:]
        y_val = label[s:]
        return x_train,y_train,x_val,y_val
    
    def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
        assert len(inputs) == len(targets)
        if shuffle:
            indices = np.arange(len(inputs))
            np.random.shuffle(indices)
        for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
            if shuffle:
                excerpt = indices[start_idx:start_idx + batch_size]
            else:
                excerpt = slice(start_idx, start_idx + batch_size)
            yield inputs[excerpt], targets[excerpt]

    我们将图片统一设为100×100的大小,然后对每一个文件夹标号,作为标签。为了检验我们是否将标签与图片对齐,我预留了一个写文件路径+标签的一个文件。

    写出来是这样的

    在做处理好标签和图片之后我们将其设定为 np.asarray(imgs, np.float32)的格式。

    然后将这些图片随机打乱顺序。以8:2的比例划分训练集和验证集。

    接着我们来生成minibatch:将数据切分成batch_size的大小送入网络。

    在预处理完数据之后,我们开始进行网络的构建

    import tensorflow as tf
    
    
    def batch_norm(x, momentum=0.9, epsilon=1e-5, train=True, name='bn'):
        return tf.layers.batch_normalization(x,
                          momentum=momentum,
                          epsilon=epsilon,
                          scale=True,
                          training=train,
                          name=name)
    
    def simple_cnn(x):
        # 第一个卷积层(100——>50)
        conv1 = tf.layers.conv2d(
            inputs=x,
            filters=32,
            kernel_size=[3, 3],
            padding="same",
            activation=tf.nn.relu,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
        conv1 = batch_norm(conv1, name='pw_bn1')
        pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
    
        # 第二个卷积层(50->25)
        conv2 = tf.layers.conv2d(
            inputs=pool1,
            filters=64,
            kernel_size=[3, 3],
            padding="same",
            activation=tf.nn.relu,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
        conv2 = batch_norm(conv2, name='pw_bn2')
        pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
    
        # 第三个卷积层(25->12)
        conv3 = tf.layers.conv2d(
            inputs=pool2,
            filters=128,
            kernel_size=[3, 3],
            padding="same",
            activation=tf.nn.relu,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
        conv3 = batch_norm(conv3, name='pw_bn3')
    
        pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)
    
        # 第四个卷积层(12->6)
        conv4 = tf.layers.conv2d(
            inputs=pool3,
            filters=128,
            kernel_size=[3, 3],
            padding="same",
            activation=tf.nn.relu,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
        conv4 = batch_norm(conv4, name='pw_bn4')
    
        pool4 = tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)
    
        re1 = tf.reshape(pool4, [-1, 6 * 6 * 128])
    
        # 全连接层
        dense1 = tf.layers.dense(inputs=re1,
                                 units=1024,
                                 activation=tf.nn.relu,
                                 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                                 kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
        dense2 = tf.layers.dense(inputs=dense1,
                                 units=512,
                                 activation=tf.nn.relu,
                                 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                                 kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
        logits = tf.layers.dense(inputs=dense2,
                                 units=5,
                                 activation=None,
                                 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                                 kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
        pred = tf.nn.softmax(logits, name='prob')
        return logits, pred

    我们的网络由4个卷积层,两个全连接层,一个softmax层组成。在每一层的卷积后面加入了batch_normalization,relu和池化。

    batch_normalization层很好用,加上它之后,有效的预防了梯度消逝和爆炸,还加速了收敛。

    在搭建好网络之后,我们开始编写训练模块

    import tensorflow as tf
    import cnn
    import dataset
    # 将所有的图片resize成100*100
    w = 100
    h = 100
    c = 3
    path = 'flowers'
    
    x = tf.placeholder(tf.float32, shape=[None, w, h, c], name='x')
    y_ = tf.placeholder(tf.int32, shape=[None, ], name='y_')
    
    logits,pred = cnn.simple_cnn(x)
    loss = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=logits)
    train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
    correct_prediction = tf.equal(tf.cast(tf.argmax(logits, 1), tf.int32), y_)
    acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    
    data, label = dataset.read_img(path)
    x_train, y_train,x_val, y_val = dataset.suffer(data, label)
    
    # 训练和测试数据,可将n_epoch设置更大一些
    n_epoch = 11
    batch_size = 16
    def train():
        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        for epoch in range(n_epoch):
            train_loss, train_acc, n_batch = 0, 0, 0
            for x_train_a, y_train_a in dataset.minibatches(x_train, y_train, batch_size, shuffle=True):
                _, err, ac = sess.run([train_op, loss, acc], feed_dict={x: x_train_a, y_: y_train_a})
                train_loss += err
                train_acc += ac
                n_batch += 1
    
            print('Epoch %d - train loss: %f'%(epoch, (train_loss / n_batch)))
            print('Epoch %d - train acc: %f'%(epoch,train_acc / n_batch))
    
            # validation
            val_loss, val_acc, n_batch = 0, 0, 0
            for x_val_a, y_val_a in dataset.minibatches(x_val, y_val, batch_size, shuffle=False):
                err, ac = sess.run([loss, acc], feed_dict={x: x_val_a, y_: y_val_a})
                val_loss += err
                val_acc += ac
                n_batch += 1
            print('Epoch %d - Validation loss: %f' %(epoch, val_loss / n_batch))
            print('Epoch %d - Validation Accuracy: %f'%( epoch,(val_acc / n_batch)))
            if epoch % 5 == 0:
                saver.save(sess,  "./model/save_net.ckpt",epoch)
                print('Trained Model Saved.')
    
    
    
    train()

    训练时我们首先要定义X,Y作为索引

    x = tf.placeholder(tf.float32, shape=[None, w, h, c], name='x')
    y_ = tf.placeholder(tf.int32, shape=[None, ], name='y_')

    然后对于刚才构建的网络进行损失的计算,精确度计算以及优化器的选择。
    接着我们将session初始化
        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
    

     然后将定义的X,Y索引与你的真实数据,标签对齐。

    使用

    _, err, ac = sess.run([train_op, loss, acc], feed_dict={x: x_train_a, y_: y_train_a})

    开始运行就可以了。
    测试同理,不过测试的时候不需要优化器,所以只需要加入参数loss,acc就可以了。
    我们每隔5次保存一次模型。

    在训练结束后,我们对使用之前训练好的模型进行预测:

    import numpy as np
    import tensorflow as tf
    from PIL import Image, ImageDraw, ImageFont
    from cnn import simple_cnn
    # 将所有的图片resize成100*100
    w = 100
    h = 100
    c = 3
    classes = ['daisy','dandelion','roses','sunflowers','tulips']
    image_test = Image.open('44079668_34dfee3da1_n.jpg')
    resized_image = image_test.resize((w, h), Image.BICUBIC)
    image_data = np.array(resized_image, dtype='float32')
    
    imgs_holder = tf.placeholder(tf.float32, shape=[1, w, h, c])
    
    logits,pred  = simple_cnn(imgs_holder)
    
    saver = tf.train.Saver()
    ckpt_dir = './model/'
    
    with tf.Session() as sess:
        ckpt = tf.train.get_checkpoint_state(ckpt_dir)
        saver.restore(sess, ckpt.model_checkpoint_path)
        classes_ = sess.run(pred,feed_dict={ imgs_holder: np.reshape(image_data , [1, w, h, c])})
    
    num = np.argmax(classes_)
    print('class is :',classes[int(num)],'  Probability is :',classes_[0][int(num)])

     在预测时,因为子还需要输入一张图片就可以了,所以我们只制作图片的索引

    imgs_holder = tf.placeholder(tf.float32, shape=[1, w, h, c])

    然后读取刚才保存的参数,只需要输入目录,即可自动读取最后训练的模型。
    然后运行:
    classes_ = sess.run(pred,feed_dict={ imgs_holder: np.reshape(image_data , [1, w, h, c])})

    输出每个类的概率值。
    我们将这个概率最大的值的标号读取出来,对应之前文件夹的标号。
    classes = ['daisy','dandelion','roses','sunflowers','tulips']
    然后将这个标号对应的概率数标出来。
    本次使用了tf.layer进行了简单CNN的构建,并且使用了tensorflow传统的sess.run
    的方法来运行图,没有使用之前提到的高级API。
    在这种方法上进行了简单的尝试,接下来会尝试使用slim框架构建网络。






     
  • 相关阅读:
    前言
    实用逆袭课【时间管理、记忆训练、工作效率、人际社交】
    读书确实是一辈子的事
    求职宝典(笔记不详细,但你自己看完消化了真的受用)
    重新认识【时间、金钱、自我、人际关系】
    即兴演讲不是即兴
    大数据和AI的未来畅想
    女性30的思考1
    第四课 人际关系
    第三课 干好工作
  • 原文地址:https://www.cnblogs.com/ansang/p/9164805.html
Copyright © 2011-2022 走看看