zoukankan      html  css  js  c++  java
  • [Leetcode] DP-- 516. Longest Palindromic Subsequence

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

    Example 1:
    Input:

    "bbbab"
    
    Output:
    4
    
    One possible longest palindromic subsequence is "bbbb".

    Example 2:
    Input:

    "cbbd"
    
    Output:
    2
    
    One possible longest palindromic subsequence is "bb".

    Solution:

    Similar to question 5. longest palindromic subtring 
     
    but the difference is here it is subsequences.
     
    1. use DP:
    denote longest palindromic subtring  as LPS
    (1) Define the subproblem
     
    dp[i][j] is the LPS length from index i to j in input string s
     
    (2) Find the recursion (state transition function)
    $dp[i][j] = left{egin{matrix}
    dp[i+1][j-1] + 2 & if hspace{0.2cm} s[i] == s[j]\ 
    max(dp[i+1][j], dp[i][j-1]) & if hspace{0.2cm} s[i] !=s[j]
    end{matrix} ight.$
     

                    dp[i + 1][j - 1] + 2                       if (s[i] == s[j])

    dp[i][j] =

                    max(dp[i + 1][j], dp[i][j - 1])        if (s[i] != s[j])
     
    (3) Get the base case
      dp[i][i] = 1 for i from 0 to n-1
     
     
    the first iteration should be traversed from back to first
     
     
     1  n = len(s)
     2         dp = [[0]*n for i in range(n)]
     3         
     4         #print ("dp: ", dp)
     5         
     6         for i in range(n-1, -1, -1):
     7             dp[i][i] = 1
     8             for j in range(i+1, n, 1):
     9                 if s[i] == s[j]:
    10                     dp[i][j] = dp[i+1][j-1] + 2
    11                 else:
    12                     dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 
    13         return dp[0][n-1]

    TLE problem for two dimension.  why? 

    further tranferred to one dimension of space.  time complexity is still the same. but space complexity is reduce to o(n) now.  Why it does not have TLE?

    #2. transferrred to one dimension
            n = len(s)
            dp = [1] * n
            
            #print ("dp: ", dp)
            
            for i in range(n-1, -1, -1):
                dpLen = 0
                for j in range(i+1, n, 1):
                    if s[i] == s[j]:
                        dp[j] = dpLen + 2
                    else:
                        dpLen = max(dp[j], dpLen)
            return max(dp)
     
  • 相关阅读:
    RocketMQ
    Docker的基本使用
    logstash、ELK
    spring cloud杂文总结
    手写一个starter
    @SpringBootApplication你知多少?
    使用ElasticSearch
    ElasticSearch安装
    啥是ElasticSearch???
    socket、端口、进程的关系
  • 原文地址:https://www.cnblogs.com/anxin6699/p/7205180.html
Copyright © 2011-2022 走看看