zoukankan      html  css  js  c++  java
  • [Leetcode] 684. Redundant Connection

    In this problem, a tree is an undirected graph that is connected and has no cycles.

    The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

    The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

    Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

    Example 1:

    Input: [[1,2], [1,3], [2,3]]
    Output: [2,3]
    Explanation: The given undirected graph will be like this:
      1
     / 
    2 - 3
    

    Example 2:

    Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
    Output: [1,4]
    Explanation: The given undirected graph will be like this:
    5 - 1 - 2
        |   |
        4 - 3


    1. 1st use union-find method. find the group of each connected node. and check new connected edge to be in the previous group

      #initialize tree
            def constructUnion(N):            #union-size
                for i in range(1, N+1):
                    idLst[i] = i
                    sizeLst[i] = 1
            
            
            #find group id
            def find(p):  
                while(p != idLst[p]):
                    idLst[p] = idLst[idLst[p]]
                    p = idLst[p]
                return p
            
            
            # check whether they are connected
            def isConnected(p, q):
                return find(p) == find(q)
            
            #Union two element into same group
            def union(p, q):
                idp = find (p)
                idq = find(q)
                
                if idp !=idq:
                    if sizeLst[p] > sizeLst[q]:
                        idLst[idq] = idp
                        sizeLst[idp] += sizeLst[idq]
                        
                    else:
                        idLst[idp] = idq
                        sizeLst[idq] += sizeLst[idp]
                
                        
            N = 1000
            idLst = [0] * (N+1)
            sizeLst = [0] * (N+1)
            
            constructUnion(N)
            for eg in edges:
                if isConnected(eg[0], eg[1]): return eg
                #print ("pair for cycle : ", eg)
                union(eg[0], eg[1])
                    
            return []
    

    --reference:  https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf

      2. use naive way to detect the cycle exist or not in the graph

    1) get the edge from reversed order, and delete from the graph gTmp
    2)use DFS to judge whether circle exists in the gTmp.  the starting node is selected from the input list backwards
     
    def cycleIterative(v, visited, parent, gTmp):
                visited[v] = True
                
                for i in gTmp[v]:
                    if not visited[i]:
                        if cycleIterative(i, visited, v, gTmp):
                            return True
                    elif parent != i:
                        return True
                return False
    
            g = defaultdict(list)                   # default dictionary to store graph
            
            for edge in edges:
                g[edge[0]].append(edge[1])
                g[edge[1]].append(edge[0])
            
            def cycle(gTmp):
                visited = defaultdict()
                for v in gTmp:
                    visited[v] = False
                for v in gTmp:
                    if not visited[v]:
                        if cycleIterative(v, visited, -1, gTmp):
                            return True
                return False    
            
            for pair in edges[::-1]:
                gTmp = deepcopy(g)
                #remove the pair edge from g
                gTmp[pair[0]].remove(pair[1])
                gTmp[pair[1]].remove(pair[0])
                print ("edge: ", gTmp)
                
                if not cycle(gTmp):
                    print ("pair for cycle : ", pair)
            return []
    

      

     
     


  • 相关阅读:
    charles使用
    断言
    JDBC Request
    HTTP请求建立一个测试计划
    利用badboy进行脚本录制
    接口测试用例
    Monkey常用命令
    charles安装与使用
    celery配置与基本使用
    图片验证码接口
  • 原文地址:https://www.cnblogs.com/anxin6699/p/8021271.html
Copyright © 2011-2022 走看看