zoukankan      html  css  js  c++  java
  • 求二进制数中1的个数

    于一个字节(8bit)的变量,求其二进制表示中“1的个数,要求算法的执行效率尽可能地高。

    请点击“我要发言”,提交您的解法或者问题。

     我要看答案


    大多数的读者都会有这样的反应:这个题目也太简单了吧,解法似乎也相当地单一,不会有太多的曲折分析或者峰回路转之处。那么面试者到底能用这个题目 考察我们什么呢?事实上,在编写程序的过程中,根据实际应用的不同,对存储空间或效率的要求也不一样。比如在PC上的程序编写与在嵌入式设备上的程序编写 就有很大的差别。我们可以仔细思索一下如何才能使效率尽可能地“高”。

    【解法一】

    可以举一个八位的二进制例子来进行分析。对于二进制操作,我们知道,除以一个2,原来的数字将会减少一个0。如果除的过程中有余,那么就表示当前位置有一个1。

    以10 100 010为例;

    第一次除以2时,商为1 010 001,余为0。

    第二次除以2时,商为101 000,余为1。

    因此,可以考虑利用整型数据除法的特点,通过相除和判断余数的值来进行分析。于是有了如下的代码。

    代码清单2-1


    int Count(int v)

    {

        int num = 0;

        while(v)

        {

                  if(v % 2 == 1)

                  {

                      num++;

                  }

                  v = v/ 2;

        }

        return num;

    }


    【解法二】使用位操作

    前面的代码看起来比较复杂。我们知道,向右移位操作同样也可以达到相除的目的。唯一不同之处在于,移位之后如何来判断是否有1存在。对于这个问题,再来看看一个八位的数字:10 100 001。

    在向右移位的过程中,我们会把最后一位直接丢弃。因此,需要判断最后一位是否为1,而“与”操作可以达到目的。可以把这个八位的数字与00000001进行“与”操作。如果结果为1,则表示当前八位数的最后一位为1,否则为0。代码如下:

    代码清单2-2


    int Count(int v)

    {

           int num = 0;

           While(v)

           {

                 num += v &0x01;

                 v >>= 1;

           }

           return num;

    }


    【解法三】

    位操作比除、余操作的效率高了很多。但是,即使采用位操作,时间复杂度仍为O(log2v),log2v为二进制数的位数。那么,还能不能再降低一些复杂度呢?如果有办法让算法的复杂度只与“1”的个数有关,复杂度不就能进一步降低了吗?

    同样用10 100 001来举例。如果只考虑和1的个数相关,那么,我们是否能够在每次判断中,仅与1来进行判断呢?

    为了简化这个问题,我们考虑只有一个1的情况。例如:01 000 000。

    如何判断给定的二进制数里面有且仅有一个1呢?可以通过判断这个数是否是2的整数次幂来实现。另外,如果只和这一个“1”进行判断,如何设计操作呢?我们知道的是,如果进行这个操作,结果为0或为1,就可以得到结论。

    如果希望操作后的结果为0,01 000 000可以和00 111 111进行“与”操作。

    这样,要进行的操作就是 01 000 000 &(01 000 000 – 00 000 001)= 01 000 000 &
    00 111 111 = 0。

    因此就有了解法三的代码:

    代码清单2-3


    int Count(int v)

    {

           int num = 0;

           while(v)

           {

                 v &= (v-1);

                 num++;

           }

           return num;

    }


    【解法四】使用分支操作

    解法三的复杂度降低到OM),其中Mv中1的个数,可能会有人已经很满足了,只用计算1的位数,这样应该够快了吧。然而我们说既然只有八位数据,索性直接把0~255的情况都罗列出来,并使用分支操作,可以得到答案,代码如下:

    代码清单2-4


    int Count(int v)

    {

           int num = 0;

           switch (v)

           {

                 case 0x0:

                        num = 0;

                        break;

                 case 0x1:

                 case 0x2:

                 case 0x4:

                 case 0x8:

                 case 0x10:

                 case 0x20:

                 case 0x40:

                 case 0x80:

                        num = 1;

                        break;

                 case 0x3:

                 case 0x6:

                 case 0xc:

                 case 0x18:

                 case 0x30:

                 case 0x60:

                 case 0xc0:

                        num = 2;

                        break;

                        //...

           }

           return num;

    }


    解法四看似很直接,但实际执行效率可能会低于解法二和解法三,因为分支语句的执行情况要看具体字节的值,如果a =0,那自然在第1个case就得出了答案,但是如果a =255,则要在最后一个case才得出答案,即在进行了255次比较操作之后!

    看来,解法四不可取!但是解法四提供了一个思路,就是采用空间换时间的方法,罗列并直接给出值。如果需要快速地得到结果,可以利用空间或利用已知结论。这就好比已经知道计算1+2+ … +N的公式,在程序实现中就可以利用公式得到结论。

    最后,得到解法五:算法中不需要进行任何的比较便可直接返回答案,这个解法在时间复杂度上应该能够让人高山仰止了。

    【解法五】查表法

    代码清单2-5


    /* 预定义的结果表 */

    int countTable[256] =

    {

         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3,

              3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3,

              4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4,

              3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3,

              4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6,

               6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4,

              5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

              3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3,

              4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4,

              4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6,

              7, 6, 7, 7, 8

    };

    int Count(int v)

    {

           //check parameter

           return countTable[v];

    }


    这是个典型的空间换时间的算法,把0~255中“1的个数直接存储在数组中,v作为数组的下标,countTable[v]就是v中“1的个数。算法的时间复杂度仅为O(1)。

    在一个需要频繁使用这个算法的应用中,通过“空间换时间”来获取高的时间效率是一个常用的方法,具体的算法还应针对不同应用进行优化。

    扩展问题

    1.   如果变量是32位的DWORD,你会使用上述的哪一个算法,或者改进哪一个算法?

    2.   另一个相关的问题,给定两个正整数(二进制形式表示)AB,问把A变为B需要改变多少位(bit)?也就是说,整数A B 的二进制表示中有多少位是不同的?

  • 相关阅读:
    easyui-numberbox后台获取数据后,鼠标一点击就自动清空了
    easyui只显示年月,时间格式
    解决ASP.Net第一次访问慢的处理 IIS 7.5
    解决ASP.Net第一次访问慢的处理(IIS8)
    在SQL2005中修改数据库名称
    HTML代码中<%%>、<%=%>
    c#中virtual, abstract和override的区别和用法
    Eclipse导入工程Some projects cannot be imported because they already exist in the workspace
    mvn package
    ipod导入音乐
  • 原文地址:https://www.cnblogs.com/any91/p/3327973.html
Copyright © 2011-2022 走看看