Given an unsorted array nums, reorder it such that nums[0] < nums[1] > nums[2] < nums[3].... Example: (1) Given nums = [1, 5, 1, 1, 6, 4], one possible answer is [1, 4, 1, 5, 1, 6]. (2) Given nums = [1, 3, 2, 2, 3, 1], one possible answer is [2, 3, 1, 3, 1, 2]. Note: You may assume all input has valid answer. Follow Up: Can you do it in O(n) time and/or in-place with O(1) extra space? Credits: Special thanks to @dietpepsi for adding this problem and creating all test cases.
Let's say nums is [10,11,...,19]. Then after nth_element and ordinary partitioning, we might have this (15 is my median):
index: 0 1 2 3 4 5 6 7 8 9
number: 18 17 19 16 15 11 14 10 13 12
I rewire it so that the first spot has index 5, the second spot has index 0, etc, so that I might get this instead:
index: 5 0 6 1 7 2 8 3 9 4
number: 11 18 14 17 10 19 13 16 12 15
And 11 18 14 17 10 19 13 16 12 15 is perfectly wiggly. And the whole partitioning-to-wiggly-arrangement (everything after finding the median) only takes O(n) time and O(1) space.
If the above description is unclear, maybe this explicit listing helps:
Accessing A(0) actually accesses nums[1].
Accessing A(1) actually accesses nums[3].
Accessing A(2) actually accesses nums[5].
Accessing A(3) actually accesses nums[7].
Accessing A(4) actually accesses nums[9].
Accessing A(5) actually accesses nums[0].
Accessing A(6) actually accesses nums[2].
Accessing A(7) actually accesses nums[4].
Accessing A(8) actually accesses nums[6].
Accessing A(9) actually accesses nums[8].
不需要排序,只需要 partitioning. 正确 partition 的数组只
要按照这个顺序插入,都是正确的。
于是问题就分成了三个子问题:
怎么 partitioning
什么顺序穿插
如何 in-place
空间优化:
public void wiggleSort(int[] nums) {
int median = findKthLargest(nums, (nums.length + 1) / 2);
int n = nums.length;
int left = 0, i = 0, right = n - 1;
while (i <= right) {
if (nums[newIndex(i,n)] > median) {
swap(nums, newIndex(left++,n), newIndex(i++,n));
}
else if (nums[newIndex(i,n)] < median) {
swap(nums, newIndex(right--,n), newIndex(i,n));
}
else {
i++;
}
}
}
private int newIndex(int index, int n) {
return (1 + 2*index) % (n | 1);
}
O(n) O(n)
public class Solution {
public void wiggleSort(int[] nums) {
int median = findKthLargest(nums, (nums.length+1)/2);
int odd = 1, even = (nums.length%2==0? nums.length-2 : nums.length-1);
int[] arr = new int[nums.length];
for (int num : nums) {
if (num > median) {
arr[odd] = num;
odd += 2;
}
else if (num < median) {
arr[even] = num;
even -= 2;
}
}
while (odd < arr.length) {
arr[odd] = median;
odd += 2;
}
while (even >= 0) {
arr[even] = median;
even -= 2;
}
for (int i=0; i<arr.length; i++) {
nums[i] = arr[i];
}
}
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
return findKthSmallest(nums, 0, len-1, len-k+1);
}
public int findKthSmallest(int[] nums, int start, int end, int k) {
int l = start;
int r = end;
int pivot = end;
while (l < r) {
while (l<r && nums[l] < nums[pivot]) {
l++;
}
while (l<r && nums[r] >= nums[pivot]) {
r--;
}
if (l == r) break;
swap(nums, l, r);
}
swap(nums, l, pivot);
if (l+1 == k) return nums[l];
else if (l+1 < k) return findKthSmallest(nums, l+1, end, k);
else return findKthSmallest(nums, start, l-1, k);
}
public void swap(int[] nums, int l, int r) {
int temp = nums[l];
nums[l] = nums[r];
nums[r] = temp;
}
}
A(i) = nums[(1+2*(i)) % (n|1)] -----------(n|1) 强行变奇数