zoukankan      html  css  js  c++  java
  • Triangle -- C3

    Given a triangle, find the minimum path sum from top to bottom. 
    Each step you may move to adjacent numbers on the row below. Notice Bonus point
    if you are able to do this using only O(n) extra space,

    where n is the total number of rows in the triangle. Have you met this question in a real interview? Yes Example Given the following triangle: [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11). Tags Dynamic Programming Related Problems Easy Minimum Path Sum

    矩阵的题常构造新的矩阵转化为题意, 简单的记忆化存储, 常用dfs的分治策略自底向下回溯, 找一条最小的最合适的路径

    递归出口(出范围, 遍历过, 满足题意(到节点) ) , 递归条件(对邻居的判断, 遍历过, 出范围, 邻居), 返回值常用分治法(后序) 尾递归,递的时候是用的上面的值, 回的时候是用的下面的值.

    自底向上

    记忆化搜索: 分治法加入了数组变量
       
    public int minimumTotal(List<List<Integer>> triangle) {
            if (triangle == null || triangle.size() == 0) {
                return 0;
            }
          
            long[][] dp = new long[triangle.size()][triangle.size()];
           for (long[] d : dp) {
            Arrays.fill(d, Long.MAX_VALUE);
               
           }
           
            for (int i = 0 ; i < dp[0].length; i++) {
                dp[dp.length - 1][i] = triangle.get(triangle.size() - 1).get(i);
            }
            dfs(triangle, dp, 0, 0);
            return (int)dp[0][0];
    
        }
        private int dfs(List<List<Integer>> triangle, long[][] dp, int i, int j) {
            if (dp[i][j] != Long.MAX_VALUE) {
                return (int)dp[i][j];
            }
            
            int ans = triangle.get(i).get(j);
    
            int next = Math.min(dfs(triangle, dp, i + 1, j),dfs(triangle, dp, i+1, j + 1)) + ans;
            dp[i][j] = next;
            return next;
        }
    

      

    动归, 动归矩阵, 自顶向下

    public class Solution {
        /**
         * @param triangle: a list of lists of integers.
         * @return: An integer, minimum path sum.
         */
        public int minimumTotal(int[][] triangle) {
            // write your code here
            if (triangle == null || triangle.length == 0) {
                return -1;
            }
            
            // state:
            int n = triangle.length;
            int[][] f = new int [n][n];
            
            //initialize
            f[0][0] = triangle[0][0];
            for (int i = 1; i < n; i++) {
                f[i][0] = f[i - 1][0] + triangle[i][0];
                f[i][i] = f[i - 1][i - 1] + triangle[i][i];
            }
            
            // top down
            
            for (int i = 1; i < n; i++) {
                for (int j = 1; j < i; j++) {
                    f[i][j] = Math.min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j];
                    
                }
            }
            
            //answer
            int ans = f[n - 1][0];
            for (int i = 1; i < n; i++) {
                if (ans > f[n - 1][i]) {
                    ans = f[n - 1][i];
                }
            }
            
            return ans;
    }
    

      

  • 相关阅读:
    面向对象中一些容易混淆的概念
    day12作业
    day10作业
    day09作业
    Where与Having的区别
    排序算法之快速排序
    排序算法之冒泡排序
    jQuery中的100个技巧
    用node.js给图片加水印
    代码高亮美化插件-----SyntaxHighlighter
  • 原文地址:https://www.cnblogs.com/apanda009/p/7290161.html
Copyright © 2011-2022 走看看