zoukankan      html  css  js  c++  java
  • 438. Find All Anagrams in a String

    Given a string s and a non-empty string p, find all the start indices of p's anagrams in s.
    
    Strings consists of lowercase English letters only and the length of both strings s and p will not be larger than 20,100.
    
    The order of output does not matter.
    
    Example 1:
    
    Input:
    s: "cbaebabacd" p: "abc"
    
    Output:
    [0, 6]
    
    Explanation:
    The substring with start index = 0 is "cba", which is an anagram of "abc".
    The substring with start index = 6 is "bac", which is an anagram of "abc".
    Example 2:
    
    Input:
    s: "abab" p: "ab"
    
    Output:
    [0, 1, 2]
    
    Explanation:
    The substring with start index = 0 is "ab", which is an anagram of "ab".
    The substring with start index = 1 is "ba", which is an anagram of "ab".
    The substring with start index = 2 is "ab", which is an anagram of "ab".

    Time Complexity will be O(n) because the "start" and "end" points will only move from left to right once.

    public List<Integer> findAnagrams(String s, String p) {
           List<Integer> list = new ArrayList<>();
        if (s == null || s.length() == 0 || p == null || p.length() == 0) return list;
        int[] hash = new int[256]; //character hash
        //record each character in p to hash
        for (char c : p.toCharArray()) {
            hash[c]++;
        }
        //two points, initialize count to p's length
        int left = 0, right = 0, count = p.length();
        while (right < s.length()) {
            //move right everytime, if the character exists in p's hash, decrease the count
            //current hash value >= 1 means the character is existing in p
            if (hash[s.charAt(right)] >= 1) {
                count--; 
            }
            hash[s.charAt(right)]--;
            right++;
            //when the count is down to 0, means we found the right anagram
            //then add window's left to result list
            if (count == 0) list.add(left);
        
            //if we find the window's size equals to p, then we have to move left (narrow the window) to find the new match window
            //++ to reset the hash because we kicked out the left
            //only increase the count if the character is in p
            //the count >= 0 indicate it was original in the hash, cuz it won't go below 0
            if (right - left == p.length() && hash[s.charAt(left)] >= 0) {
                count++;
            }
            if (right - left == p.length()) {
                hash[s.charAt(left)]++;
            left++;
            }
            
        }
        return list; 
        }
    

      

      

  • 相关阅读:
    设计模式之单一职责原则
    设计模式之策略模式
    设计模式之简单工厂模式
    基于 Docker 的微服务架构实践
    深入理解Redis内存模型
    Spring核心——设计模式与IoC
    P9架构师讲解从单机至亿级流量大型网站系统架构的演进过程
    大型分布式网站架构:缓存在分布式系统中的应用
    阿里架构师的日志:带你快速理解微服务架构;理解微服务架构的核心
    Spring核心——Bean的定义与控制
  • 原文地址:https://www.cnblogs.com/apanda009/p/8071760.html
Copyright © 2011-2022 走看看