zoukankan      html  css  js  c++  java
  • 如何计算Kubernetes容器CPU使用率

    参数解释


    使用Prometheus配置kubernetes环境中Container的CPU使用率时,会经常遇到CPU使用超出100%,下面就来解释一下

    1. container_spec_cpu_period

      当对容器进行CPU限制时,CFS调度的时间窗口,又称容器CPU的时钟周期通常是100,000微秒

    2. container_spec_cpu_quota

      是指容器的使用CPU时间周期总量,如果quota设置的是700,000,就代表该容器可用的CPU时间是7*100,000微秒,通常对应kubernetes的resource.cpu.limits的值

    3. container_spec_cpu_share

      是指container使用分配主机CPU相对值,比如share设置的是500m,代表窗口启动时向主机节点申请0.5个CPU,也就是50,000微秒,通常对应kubernetes的resource.cpu.requests的值

    4. container_cpu_usage_seconds_total

      统计容器的CPU在一秒内消耗使用率,应注意的是该container所有的CORE

    5. container_cpu_system_seconds_total

      统计容器内核态在一秒时间内消耗的CPU

    6. container_cpu_user_seconds_total

      统计容器用户态在一秒时间内消耗的CPU
        参考官方地址
        https://docs.signalfx.com/en/latest/integrations/agent/monitors/cadvisor.html
        https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

    具体公式


    1. 默认如果直接使用container_cpu_usage_seconds_total的话,如下

      sum(irate(container_cpu_usage_seconds_total{container="$Container",instance="$Node",pod="$Pod"}[5m])*100)by(pod)

      默认统计的数据是该容器所有的CORE的平均使用率

    2. 如果要精确计算每个容器的CPU使用率,使用%呈现的形式,如下

      sum(irate(container_cpu_usage_seconds_total{container="$Container",instance="$Node",pod="$Pod"}[5m])*100)by(pod)/sum(container_spec_cpu_quota{container="$Container",instance="$Node",pod="$Pod"}/container_spec_cpu_period{container="$Container",instance="$Node",pod="$Pod"})by(pod)

      其中container_spec_cpu_quota/container_spec_cpu_period,就代表该容器有多少个CORE

    3. 参考官方git issue
      https://github.com/google/cadvisor/issues/2026#issuecomment-415819667

    docker stats


    docker stats输出的指标列是如何计算的,如下

    首先docker stats是通过Docker API /containers/(id)/stats接口来获得live data stream,再通过docker stats进行整合

    在Linux中使用docker stats输出的内存使用率(MEM USAGE),实则该列的计算是不包含Cache的内存

    cache usage在 ≤ docker 19.03版本的API接口输出对应的字段是memory_stats.total_inactive_file,而 > docker 19.03的版本对应的字段是memory_stats.cache

    docker stats 输出的PIDS一列代表的是该容器创建的进程或线程的数量,threads是Linux kernel中的一个术语,又称 lightweight process & kernel task

    1. 如何通过Docker API查看容器资源使用率,如下

      <root@PROD-BE-K8S-WN17 ~># curl -s --unix-socket /var/run/docker.sock "http://localhost/v1.40/containers/10f2db238edc/stats" | jq -r
      {
        "read": "2022-01-05T06:14:47.705943252Z",
        "preread": "0001-01-01T00:00:00Z",
        "pids_stats": {
          "current": 240
        },
        "blkio_stats": {
          "io_service_bytes_recursive": [
            {
              "major": 253,
              "minor": 0,
              "op": "Read",
              "value": 0
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Write",
              "value": 917504
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Sync",
              "value": 0
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Async",
              "value": 917504
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Discard",
              "value": 0
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Total",
              "value": 917504
            }
          ],
          "io_serviced_recursive": [
            {
              "major": 253,
              "minor": 0,
              "op": "Read",
              "value": 0
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Write",
              "value": 32
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Sync",
              "value": 0
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Async",
              "value": 32
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Discard",
              "value": 0
            },
            {
              "major": 253,
              "minor": 0,
              "op": "Total",
              "value": 32
            }
          ],
          "io_queue_recursive": [],
          "io_service_time_recursive": [],
          "io_wait_time_recursive": [],
          "io_merged_recursive": [],
          "io_time_recursive": [],
          "sectors_recursive": []
        },
        "num_procs": 0,
        "storage_stats": {},
        "cpu_stats": {
          "cpu_usage": {
            "total_usage": 251563853433744,
            "percpu_usage": [
              22988555937059,
              6049382848016,
              22411490707722,
              5362525449957,
              25004835766513,
              6165050456944,
              27740046633494,
              6245013152748,
              29404953317631,
              5960151933082,
              29169053441816,
              5894880727311,
              25772990860310,
              5398581194412,
              22856145246881,
              5140195759848
            ],
            "usage_in_kernelmode": 30692640000000,
            "usage_in_usermode": 213996900000000
          },
          "system_cpu_usage": 22058735930000000,
          "online_cpus": 16,
          "throttling_data": {
            "periods": 10673334,
            "throttled_periods": 1437,
            "throttled_time": 109134709435
          }
        },
        "precpu_stats": {
          "cpu_usage": {
            "total_usage": 0,
            "usage_in_kernelmode": 0,
            "usage_in_usermode": 0
          },
          "throttling_data": {
            "periods": 0,
            "throttled_periods": 0,
            "throttled_time": 0
          }
        },
        "memory_stats": {
          "usage": 8589447168,
          "max_usage": 8589926400,
          "stats": {
            "active_anon": 0,
            "active_file": 260198400,
            "cache": 1561460736,
            "dirty": 3514368,
            "hierarchical_memory_limit": 8589934592,
            "hierarchical_memsw_limit": 8589934592,
            "inactive_anon": 6947250176,
            "inactive_file": 1300377600,
            "mapped_file": 0,
            "pgfault": 3519153,
            "pgmajfault": 0,
            "pgpgin": 184508478,
            "pgpgout": 184052901,
            "rss": 6947373056,
            "rss_huge": 6090129408,
            "total_active_anon": 0,
            "total_active_file": 260198400,
            "total_cache": 1561460736,
            "total_dirty": 3514368,
            "total_inactive_anon": 6947250176,
            "total_inactive_file": 1300377600,
            "total_mapped_file": 0,
            "total_pgfault": 3519153,
            "total_pgmajfault": 0,
            "total_pgpgin": 184508478,
            "total_pgpgout": 184052901,
            "total_rss": 6947373056,
            "total_rss_huge": 6090129408,
            "total_unevictable": 0,
            "total_writeback": 0,
            "unevictable": 0,
            "writeback": 0
          },
          "limit": 8589934592
        },
        "name": "/k8s_prod-xc-fund_prod-xc-fund-646dfc657b-g4px4_prod_523dcf9d-6137-4abf-b4ad-bd3999abcf25_0",
        "id": "10f2db238edc13f538716952764d6c9751e5519224bcce83b72ea7c876cc0475"
    2. 如何计算

        官方地址

        https://docs.docker.com/engine/api/v1.40/#operation/ContainerStats

      The precpu_stats is the CPU statistic of the previous read, and is used to calculate the CPU usage percentage. It is not an exact copy of the cpu_stats field.

      If either precpu_stats.online_cpus or cpu_stats.online_cpus is nil then for compatibility with older daemons the length of the corresponding cpu_usage.percpu_usage array should be used.

      To calculate the values shown by the stats command of the docker cli tool the following formulas can be used:

      • used_memory = memory_stats.usage - memory_stats.stats.cache

      • available_memory = memory_stats.limit

      • Memory usage % = (used_memory / available_memory) * 100.0

      • cpu_delta = cpu_stats.cpu_usage.total_usage - precpu_stats.cpu_usage.total_usage

      • system_cpu_delta = cpu_stats.system_cpu_usage - precpu_stats.system_cpu_usage

      • number_cpus = lenght(cpu_stats.cpu_usage.percpu_usage) or cpu_stats.online_cpus

      • CPU usage % = (cpu_delta / system_cpu_delta) * number_cpus * 100.0

  • 相关阅读:
    005 Python的IDE之Pycharm的使用
    006 Python的IDE之Jupyter的使用
    004 pip的使用
    003 Python解释器源修改
    002 Python解释器安装
    BZOJ 4567 [SCOI2016]背单词 (Trie树、贪心)
    BZOJ 2085 luogu P3502 [POI2010]Hamsters (KMP、Floyd、倍增)
    UOJ #219 BZOJ 4650 luogu P1117 [NOI2016]优秀的拆分 (后缀数组、ST表)
    UOJ #214 [UNR #1]合唱队形 (概率期望计数、DP、Min-Max容斥)
    LOJ #2542 [PKUWC2018]随机游走 (概率期望、组合数学、子集和变换、Min-Max容斥)
  • 原文地址:https://www.cnblogs.com/apink/p/15767687.html
Copyright © 2011-2022 走看看