zoukankan      html  css  js  c++  java
  • poj1637

    Sightseeing tour
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7796   Accepted: 3264

    Description

    The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visited exactly once. The bus should also start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it's possible to construct a sightseeing tour under these constraints.

    Input

    On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two positive integers m and s, 1 <= m <= 200,1 <= s <= 1000 being the number of junctions and streets, respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going from xi to yi), otherwise it's a two-way street. You may assume that there exists a junction from where all other junctions can be reached.

    Output

    For each scenario, output one line containing the text "possible" or "impossible", whether or not it's possible to construct a sightseeing tour.

    Sample Input

    4
    5 8
    2 1 0
    1 3 0
    4 1 1
    1 5 0
    5 4 1
    3 4 0
    4 2 1
    2 2 0
    4 4
    1 2 1
    2 3 0
    3 4 0
    1 4 1
    3 3
    1 2 0
    2 3 0
    3 2 0
    3 4
    1 2 0
    2 3 1
    1 2 0
    3 2 0

    Sample Output

    possible
    impossible
    impossible
    possible

    netflow:首先要使这个图为欧拉回路,需满足:所有点的入度等于出度,这样就比较好建模了。

    我们对于无向边按照输入的顺度定向,这样有可能造一些点不满足条件,我们发现对于一个点,如果它出入度之差为z,那么通过这个点的边至少需要修改z/2条,那么对于一个点,如果入度大于出变,建边(s,i,z/2),出度大于入度则建边(i,t,z/2),对于某条无向边,如果开始定义的方向为x->z,建边(z,x,1),(注意,只建(z,x,1),因为x->z贡献了z的入度,所以改这条边是减少z的入度,再加出我们对于入度大于点连s,所以这条边只能由z流向x。

    #include<cstdio>
    #include<cstdlib>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    
    using namespace std;
    
    int dis[2011],g[2011],que[2011],d[2011];
    int next[23411],y[23411],flow[23411];
    int tt,data,tl,n,m,tot,x,z,kind,i,j,xzq,sum,s,t;
    bool pl;
    
    void star(int i,int j,int k)
    {
        tt++;
        next[tt]=g[i];
        g[i]=tt;
        y[tt]=j;
        flow[tt]=k;
        tt++;
        next[tt]=g[j];
        g[j]=tt;
        y[tt]=i;
        flow[tt]=0;
    }
    
    void Bfs()
    {
        int l,r,x,j,k;
        memset(dis,255,sizeof(dis));
        dis[s]=0;
        que[l=r=1]=s;
        while(l<=r){
            x=que[l];
            j=g[x];
            while(j!=0){
                k=y[j];
                if(flow[j]>0&&dis[k]==-1){
                    r++;
                    que[r]=k;
                    dis[k]=dis[x]+1;
                }
                j=next[j];
            }
            l++;
        }
    }
    
    int Dfs(int x,int fl)
    {
        if(x==t)return fl;
        int j,k,z,e;
        z=0;
        j=g[x];
        while(j!=0){
            k=y[j];
            if(flow[j]>0&&dis[k]==dis[x]+1){
                e=Dfs(k,min(flow[j],fl));
                z+=e;
                fl-=e;
                flow[j]-=e;
                flow[j^1]+=e;
                if(!fl)return z;
            }
            j=next[j];
        }
        dis[x]=-1;
        return z;
    }
    
    void Dinic()
    {
        while(true){
            Bfs();
            if(dis[t]==-1)break;
            xzq+=Dfs(s,0x7fffffff);
        }
    }
    
    int main()
    {
        scanf("%d",&data);
        for(tl=1;tl<=data;tl++){
            memset(g,0,sizeof(g));
            memset(d,0,sizeof(d));
            tt=1;
            scanf("%d%d",&n,&m);
            for(i=1;i<=m;i++){
                scanf("%d%d%d",&x,&z,&kind);
                if(x==z)continue;
                if(kind==1){
                    d[z]++;
                    d[x]--;
                }
                else{
                    d[z]++;
                    d[x]--;
                    star(z,x,1);
                }
            }
            s=n+1;
            t=n+2;
            xzq=0;
            sum=0;
            pl=true;
            for(i=1;i<=n;i++){
                if(abs(d[i])%2!=0)pl=false;
                if(d[i]>0){
                    star(s,i,d[i]/2);
                    sum+=d[i]/2;
                }
                if(d[i]<0)star(i,t,-d[i]/2);
            }
            Dinic();
            if(xzq!=sum||pl==false)printf("impossible
    ");
            else printf("possible
    ");
        }
    }
  • 相关阅读:
    使用keepalived实现双机热备
    MYSQL ERROR CODE 错误编号的意义
    Mysql slow query log
    eclipse svn 分支合并到主干
    Timer的schedule和scheduleAtFixedRate方法的区别解析
    Java内部类引用外部类中的局部变量为何必须是final问题解析
    nginx中有关命令和日志切割,配置文件加载的详细阐述
    流媒体中ffmpeg 命令的使用
    windows下搭建nginx服务器及实现nginx支持https配置流程
    mysql 中sql语句的执行顺序
  • 原文地址:https://www.cnblogs.com/applejxt/p/4113907.html
Copyright © 2011-2022 走看看