zoukankan      html  css  js  c++  java
  • CF 429D

    D - Tricky Function
    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j)(1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:


    int g(int i, int j) {
    int sum = 0;
    for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
    sum = sum + a[k];
    return sum;
    }

    Find a value mini ≠ j  f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input

    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output

    Output a single integer — the value of mini ≠ j  f(i, j).

    Sample Input

    Input
    4
    1 0 0 -1
    Output
    1
    Input
    2
    1 -1
    Output
    2
     求Min((j-i)^2+(sum(a[i+1]~a[j]))^2
     
    我们发现sum(a[i+1]~a[j])=(pre[j]-pre[i])
     
    那么我们求的即是(j-i)^2+(pre[j]-pre[i])^2
     
    我们把(i,pre[i])抽象成一个点,那么所求即是两点距离
     
    Ans即是平面最近点对距离,分治解决
     
    #include<cstdio>
    #include<cstdlib>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<utility>
    #define x first
    #define y second
    
    using namespace std;
    
    typedef long long ll;
    
    typedef pair<ll,ll> pi;
    
    pi a[100011],ts[100011],que[100011];
    int n,i,x;
    ll ans,pre[100011];
    
    ll dis(pi a,pi b)
    {
        return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
    }
    
    bool cmpy(pi a,pi b)
    {
        return a.y<b.y;
    }
    
    void Solve(int l,int r)
    {
        int tc,mid,L,R,i,j;
        ll mx;
        if(l+1>=r){
            if(r==l+1)ans=min(ans,dis(a[l],a[r]));
            return;
        }
        mid=(l+r)/2;
        Solve(l,mid);
        Solve(mid+1,r);
        mx=a[mid].x;
        tc=0;
        for(i=mid;i>=l;i--){
            if((mx-a[i].x)*(mx-a[i].x)>=ans)break;
            ts[++tc]=a[i];
        }
        for(i=mid+1;i<=r;i++){
            if((mx-a[i].x)*(mx-a[i].x)>=ans)break;
            ts[++tc]=a[i];
        }
        sort(ts+1,ts+1+tc,cmpy);
        L=1;R=0;
        for(i=1;i<=tc;i++){
            R++;
            que[R]=ts[i];
            while(L<R&&(que[L].y-que[R].y)*(que[L].y-que[R].y)>=ans)L++;
            for(j=L;j<R;j++)ans=min(ans,dis(que[j],que[R]));
        }
        
    }
    
    int main()
    {
        scanf("%d",&n);
        for(i=1;i<=n;i++){
            scanf("%d",&x);
            pre[i]=pre[i-1]+x;
            a[i].x=i;a[i].y=pre[i];
        }
        ans=1ll<<60;
        Solve(1,n);
        printf("%I64d
    ",ans);
    }
  • 相关阅读:
    docker构建镜像
    SpringBoot 配置的加载
    Gradle实战(02)--Gradle Build的创建
    Gradle实战(01)--介绍与安装
    统计最常用10个命令的脚本
    jackson序列化与反序列化的应用实践
    go http请求流程分析
    java线程的3种实现方式及线程池
    git多账号使用
    java多版本管理
  • 原文地址:https://www.cnblogs.com/applejxt/p/4525448.html
Copyright © 2011-2022 走看看