zoukankan      html  css  js  c++  java
  • CF 429D

    D - Tricky Function
    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j)(1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:


    int g(int i, int j) {
    int sum = 0;
    for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
    sum = sum + a[k];
    return sum;
    }

    Find a value mini ≠ j  f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input

    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output

    Output a single integer — the value of mini ≠ j  f(i, j).

    Sample Input

    Input
    4
    1 0 0 -1
    Output
    1
    Input
    2
    1 -1
    Output
    2
     求Min((j-i)^2+(sum(a[i+1]~a[j]))^2
     
    我们发现sum(a[i+1]~a[j])=(pre[j]-pre[i])
     
    那么我们求的即是(j-i)^2+(pre[j]-pre[i])^2
     
    我们把(i,pre[i])抽象成一个点,那么所求即是两点距离
     
    Ans即是平面最近点对距离,分治解决
     
    #include<cstdio>
    #include<cstdlib>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<utility>
    #define x first
    #define y second
    
    using namespace std;
    
    typedef long long ll;
    
    typedef pair<ll,ll> pi;
    
    pi a[100011],ts[100011],que[100011];
    int n,i,x;
    ll ans,pre[100011];
    
    ll dis(pi a,pi b)
    {
        return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
    }
    
    bool cmpy(pi a,pi b)
    {
        return a.y<b.y;
    }
    
    void Solve(int l,int r)
    {
        int tc,mid,L,R,i,j;
        ll mx;
        if(l+1>=r){
            if(r==l+1)ans=min(ans,dis(a[l],a[r]));
            return;
        }
        mid=(l+r)/2;
        Solve(l,mid);
        Solve(mid+1,r);
        mx=a[mid].x;
        tc=0;
        for(i=mid;i>=l;i--){
            if((mx-a[i].x)*(mx-a[i].x)>=ans)break;
            ts[++tc]=a[i];
        }
        for(i=mid+1;i<=r;i++){
            if((mx-a[i].x)*(mx-a[i].x)>=ans)break;
            ts[++tc]=a[i];
        }
        sort(ts+1,ts+1+tc,cmpy);
        L=1;R=0;
        for(i=1;i<=tc;i++){
            R++;
            que[R]=ts[i];
            while(L<R&&(que[L].y-que[R].y)*(que[L].y-que[R].y)>=ans)L++;
            for(j=L;j<R;j++)ans=min(ans,dis(que[j],que[R]));
        }
        
    }
    
    int main()
    {
        scanf("%d",&n);
        for(i=1;i<=n;i++){
            scanf("%d",&x);
            pre[i]=pre[i-1]+x;
            a[i].x=i;a[i].y=pre[i];
        }
        ans=1ll<<60;
        Solve(1,n);
        printf("%I64d
    ",ans);
    }
  • 相关阅读:
    IDEA的JDBC报错解决
    java注解
    Java反射
    javaIO
    工程师的认知
    前端的一些性能提升
    ES6函数的扩展
    2020新年愿望
    高维护性的javascript
    Chrome Dev tools的几点小技巧
  • 原文地址:https://www.cnblogs.com/applejxt/p/4525448.html
Copyright © 2011-2022 走看看