zoukankan      html  css  js  c++  java
  • 因式分解技巧——分组分解

    《因式分解技巧》,单墫著

    整式 (ax-by-bx+ay) 的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解。

    三步曲

    以前面的式子为例。

    • 将原式的项适当分组:$$(ax-bx)+(ay-by)$$
    • 对每一组进行处理(“提”或“代”): $$x(a-b)+y(a-b)$$
    • 将处理后的每一组当作一项,再进行“提”或“代”: $$(x+y)(a-b)$$

    一个整式的项可能有多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法。

    平均分配

    如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配。

    • 分解因式:(x^3-2x^2-x+2+x^5-2x^4).
      6项可以分成三组,每组两项。我们把幂次相近的项放在一起,即 $$(x5-2x4)+(x3-2x2)-(x-2)$$
      提项 $$x4(x-2)+x2(x-2)-(x-2)$$
      再提项 $$(x-2)(x4+x2-1)$$

    这题还可以按分两组(按系数分)的方法进行分解。

    瞄准公式

    如果在第二步或第三步中需要应用乘法公式,那么各组中的项数不一定相等,应当根据公式的特点来确定。

    以书中的例7为例:分解因式 (x^4+x^3+2x^2+x+1).

    • 为使用完全平方公式进行分组 $$(x2+2x2+1)+(x^3+x)$$
      使用公式及提取公因式 $$(x2+1)2+x(x^2+1)$$
      提取公因式 $$(x2+1)(x2+x+1)$$

    这题还可以用拆项的方法

    • 拆项 $$(x4+x3+x2)+(x2+x+1)$$
      提取公因式 $$x2(x2+x+1)+(x^2+x+1)$$
      提取公因式 $$(x2+1)(x2+x+1)$$

    从头再来

    如果分组分得不恰当,因式分解无法进行下去,那么就应当回到分组前,从零开始,考虑新的分组。

    对于多项式 (x^3+x^2-y^3-y^2),如果按照含“(x)”、“(y)”进行分组,那么得到 $$x(x+1)-y2(y+1)$$ 之后就无法进行再分解了。这时就需要从头再来。
    这一次,我们按次数来分组 $$(x3-y3)+(x2-y2)$$
    使用平方差及立方差公式即可得到 $$(x-y)(x2+xy+y2+x+y).$$

  • 相关阅读:
    CSS属性选择器
    JS中For循环中嵌套setTimeout()方法的执行顺序
    document.getElementsByTagName()方法的返回值
    常见浏览器及其内核
    git与svn的区别
    JS解析URL参数为对象
    CSS中的伪类和为伪元素
    CSS中:first-child伪类
    CSS链接使用伪类的顺序
    CSS行内框(内联元素)
  • 原文地址:https://www.cnblogs.com/apprenticeship/p/4028123.html
Copyright © 2011-2022 走看看