zoukankan      html  css  js  c++  java
  • Andrew Ng机器学习week3(Regularization)编程习题

    * sigmoid.m

    function g = sigmoid(z)
    %SIGMOID Compute sigmoid functoon
    %   J = SIGMOID(z) computes the sigmoid of z.
    
    % You need to return the following variables correctly 
    g = zeros(size(z));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the sigmoid of each value of z (z can be a matrix,
    %               vector or scalar).
    
    g = 1 ./ (1 + exp(-z))
    
    % =============================================================
    
    end

    * costFunction.m

    function [J, grad] = costFunction(theta, X, y)
    %COSTFUNCTION Compute cost and gradient for logistic regression
    %   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
    %   parameter for logistic regression and the gradient of the cost
    %   w.r.t. to the parameters.
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Note: grad should have the same dimensions as theta
    %
    
    J = ((-y' * log(sigmoid(X*theta))) - (1-y)' * log(1-sigmoid(X*theta)))/m;
    grad = (X' * (sigmoid(X*theta) - y)) ./ m;
    
    
    % =============================================================
    
    end

    * predict.m

    function p = predict(theta, X)
    %PREDICT Predict whether the label is 0 or 1 using learned logistic 
    %regression parameters theta
    %   p = PREDICT(theta, X) computes the predictions for X using a 
    %   threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
    
    m = size(X, 1); % Number of training examples
    
    % You need to return the following variables correctly
    p = zeros(m, 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned logistic regression parameters. 
    %               You should set p to a vector of 0's and 1's
    %
    
    p = floor(sigmoid(X*theta) .* 2)
    
    % =========================================================================
    
    
    end

    * costFunctionReg.m

    function [J, grad] = costFunctionReg(theta, X, y, lambda)
    %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
    %   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    
    
    J =  ((-y' * log(sigmoid(X*theta)))  ...
        - (1-y)' * log(1-sigmoid(X*theta)))/m ...
        + (sum(theta .^2) - theta(1)^2)*lambda / (2 * m);
    
    grad(1) = (X(:,1)' * (sigmoid(X*theta) -y)) ./ m;
    for i = 2:size(theta)
        grad(i) = (X(:,i)' * (sigmoid(X*theta) -y)) ./ m ...
                    + lambda*theta(i)/m
    
    
    % =============================================================
    
    end
  • 相关阅读:
    设计若干个函数, ①删除除空格、英文逗号、句号、问号、感叹号之外的所有字符; ②两个英文单词之间的空格多于1个的,把多余的删去; ③检测每句首字母是否为大写字母,若不是,将其转换为大写字母; 检测句中除首字母外是否有大写字母,若有,将其转化为小写字母。
    在一个无序整数数组中,找出连续增长片段最长的一段, 增长步长是1。Example: [3,2,4,5,6,1,9], 最长的是[4,5,6]
    linux常用命令
    linux下硬盘分区/格式化/挂载
    Solr集群搭建
    redis集群搭建手册
    免费论文查重
    log4 配置日志文件变量名
    sqlserver 属性 DefaultFullTextLanguageLcid 不可用
    iis 0x80070032 Cannot read configuration file because it exceeds the maximum file size
  • 原文地址:https://www.cnblogs.com/arcticant/p/3440196.html
Copyright © 2011-2022 走看看