zoukankan      html  css  js  c++  java
  • Flume简介及使用

    一、Flume概述

        1)官网地址
        http://flume.apache.org/
        2)日志采集工具    
      Flume是一种分布式,可靠且可用的服务,用于有效地收集,聚合和移动大量日志数据。它具有基于流数据流的简单灵活的架构。它具有可靠的可靠性机制和许多故障转移和恢复机制,具有强大的容错能力。
    它使用简单的可扩展数据模型,允许在线分析应用程序。
    3)为什么需要flume 数据从哪里来? -》爬虫 -》日志数据 flume -》传统型数据库 sqoop 4)flume架构 source:数据源 产生数据流,同时source将产生的数据流传输到channel channel:传输通道 用于桥接Source和sinks sinks:下沉 从channel收集数据 event:传输单元 Flume数据传传输的基本单元,以事件的形式将数据送往目的地。

    二、Flume安装部署

        1)下载安装包
        http://archive.apache.org/dist/flume/1.6.0/
        2)上传到linux
        alt+p
        3)解压
        tar -zxvf apache-flume-1.6.0-bin.tar.gz
        4)重命名
        mv apache-flume-1.6.0-bin/ flume
        cd flume/conf
        mv flume-env.sh.template flume-env.sh
        5)修改配置文件
        vi flume-env.sh
        export JAVA_HOME=/root/hd/jdk1.8.0_144

    三、Flume监听端口

    1、安装telnet

        yum search telnet
        yum intsall telnet.x86_64

    2、写配置文件  flumejob_telnet.conf

    #smple.conf: A single-node Flume configuration
    
    # Name the components on this agent 定义变量方便调用 加s可以有多个此角色
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source 描述source角色 进行内容定制
    # 此配置属于tcp source 必须是netcat类型
    a1.sources.r1.type = netcat 
    a1.sources.r1.bind = localhost
    a1.sources.r1.port = 44444
    
    # Describe the sink 输出日志文件
    a1.sinks.k1.type = logger
    
    # Use a channel which buffers events in memory(file) 使用内存 总大小1000 每次传输100
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel 一个source可以绑定多个channel 
    # 一个sinks可以只能绑定一个channel  使用的是图二的模型
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1

    放置在flume/conf/下

    3、启动

    bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flumejob_telnet.conf -Dflume.root.logger=INFO,console

    4、发送数据

    telnet localhost 44444

    5、查看

    四、实时的采集文件到HDFS

    1、写配置文件  flumejob_hdfs.conf

    # Name the components on this agent 
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source 
    # exec 执行一个命令的方式去查看文件 tail -F 实时查看
    a1.sources.r1.type = exec
    # 要执行的脚本command tail -F 默认10行 man tail  查看帮助
    a1.sources.r1.command = tail -F /tmp/root/hive.log
    # 执行这个command使用的是哪个脚本 -c 指定使用什么命令
    # whereis bash
    # bash: /usr/bin/bash /usr/share/man/man1/bash.1.gz 
    a1.sources.r1.shell = /usr/bin/bash -c
    
    # Describe the sink 
    a1.sinks.k1.type = hdfs
    a1.sinks.k1.hdfs.path = hdfs://hd09-1:9000/flume/%Y%m%d/%H
    #上传文件的前缀
    a1.sinks.k1.hdfs.filePrefix = logs-
    #是否按照时间滚动文件夹
    a1.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹  秒 (默认30s)
    a1.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位(每小时滚动一个文件夹)
    a1.sinks.k1.hdfs.roundUnit = minute
    #是否使用本地时间戳
    a1.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个 Event 才 flush 到 HDFS 一次
    a1.sinks.k1.hdfs.batchSize = 500
    #设置文件类型,可支持压缩
    a1.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件 秒
    a1.sinks.k1.hdfs.rollInterval = 30
    #设置每个文件的滚动大小 字节(最好128M)
    a1.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与 Event 数量无关
    a1.sinks.k1.hdfs.rollCount = 0
    #最小冗余数(备份数 生成滚动功能则生效roll hadoop本身有此功能 无需配置) 1份 不冗余
    a1.sinks.k1.hdfs.minBlockReplicas = 1
    
    # Use a channel which buffers events in memory 
    a1.channels.c1.type = memory 
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1

    2、启动

    bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flumejob_hdfs.conf

    3、此时操作hive客户端

    报错日志将存储到hdfs中

     执行

    hdfs dfs -cat /flume/20181125/19/logs-.1543146164570

    得到文件内容和hive出错的日志一致

    五、实时监听文件夹

    1、写配置文件  flumejob_dir.conf

    # 定义
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = spooldir
    # 监控的文件夹
    a1.sources.r1.spoolDir = /root/spooldir
    # 上传成功后显示后缀名 
    a1.sources.r1.fileSuffix = .COMPLETED
    # 如论如何 加绝对路径的文件名 默认false
    a1.sources.r1.fileHeader = true
    
    #忽略所有以.tmp 结尾的文件(正在被写入),不上传
    # ^以任何开头 出现无限次 以.tmp结尾的
    a1.sources.r1.ignorePattern = ([^ ]*.tmp)
    
    # Describe the sink 
    a1.sinks.k1.type = hdfs
    a1.sinks.k1.hdfs.path = hdfs://hd09-1:9000/flume/spooldir/%Y%m%d/%H
    #上传文件的前缀
    a1.sinks.k1.hdfs.filePrefix = spooldir-
    #是否按照时间滚动文件夹
    a1.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a1.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a1.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a1.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个 Event 才 flush 到 HDFS 一次
    a1.sinks.k1.hdfs.batchSize = 50
    
    #设置文件类型,可支持压缩
    a1.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a1.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是 128M 
    a1.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与 Event 数量无关
    a1.sinks.k1.hdfs.rollCount = 0
    #最小副本数
    a1.sinks.k1.hdfs.minBlockReplicas = 1
    
    # Use a channel which buffers events in memory 
    a1.channels.c1.type = memory 
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1 
    a1.sinks.k1.channel = c1

    2、创建/root/spooldir文件夹

    cd /root
    mkdir spooldir

    3、启动

    bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flumejob_dir.conf

    4、将/root下的a.txt复制到spooldir目录下

    cp -rf /root/a.txt /root/spooldir/

    此时

    然后查看hdfs

    此时/flume/spooldir/20181125/20/spooldir-.1543147878160.tmp 文件中的内容就是a.txt文件中的内容,

    如果此时关闭监听命令,那么spooldir-.1543147878160.tmp文件就变成spooldir-.1543147878160文件持久化到hdfs中。

     六、多个channel/sink

    1、需求

    需求:监控hive.log文件,同时产生两个channel,一个channel对应的sink存储到hdfs中,另外一个channel对应的sink存储到本地。

    2、示意图

    3、写配置文件  flumejob_1.conf

    # name the components on this agent 
    a1.sources = r1
    a1.sinks = k1 k2 
    a1.channels = c1 c2
    # 将数据流复制给多个 channel
    a1.sources.r1.selector.type = replicating
    
    # Describe/configure the source 
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /tmp/root/hive.log
    a1.sources.r1.shell = /bin/bash -c
    
    
    # Describe the sink
    # 分两个端口发送数据 
    a1.sinks.k1.type = avro 
    a1.sinks.k1.hostname = hd09-1 
    a1.sinks.k1.port = 4141
    
    a1.sinks.k2.type = avro 
    a1.sinks.k2.hostname = hd09-1 
    a1.sinks.k2.port = 4142
    
    # Describe the channel 
    a1.channels.c1.type = memory 
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.channels.c2.type = memory 
    a1.channels.c2.capacity = 1000
    a1.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel 
    a1.sources.r1.channels = c1 c2 
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c2

    4、写配置文件  flumejob_2.conf

    # Name the components on this agent 
    a2.sources = r1
    a2.sinks = k1 
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = avro 
    # 端口抓取数据
    a2.sources.r1.bind = hd09-1
    a2.sources.r1.port = 4141
    
    # Describe the sink 
    a2.sinks.k1.type = hdfs
    a2.sinks.k1.hdfs.path = hdfs://hd09-1:9000/flume2/%Y%m%d/%H
    
    #上传文件的前缀
    a2.sinks.k1.hdfs.filePrefix = flume2-
    #是否按照时间滚动文件夹
    a2.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个 Event 才 flush 到 HDFS 一次
    a2.sinks.k1.hdfs.batchSize = 100
    
    #设置文件类型,可支持压缩
    a2.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是 128M 
    a2.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与 Event 数量无关
    a2.sinks.k1.hdfs.rollCount = 0
    #最小副本数
    a2.sinks.k1.hdfs.minBlockReplicas = 1
    
    # Describe the channel 
    a2.channels.c1.type = memory 
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel 
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1

    5、写配置文件  flumejob_3.conf

    # Name the components on this agent 
    a3.sources = r1
    a3.sinks = k1 
    a3.channels = c1
    
    # Describe/configure the source 
    a3.sources.r1.type = avro
    a3.sources.r1.bind = hd09-1
    a3.sources.r1.port = 4142
    
    # Describe the sink 
    a3.sinks.k1.type = file_roll
    a3.sinks.k1.sink.directory = /root/flume2
    
    # Describe the channel 
    a3.channels.c1.type = memory 
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    
    # Bind the source and sink to the channel 
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1

    6、启动,分别在三个窗口依次执行以下命令

    bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flumejob_1.conf
    
    bin/flume-ng agent --conf conf/ --name a2 --conf-file conf/flumejob_2.conf
    
    bin/flume-ng agent --conf conf/ --name a3 --conf-file conf/flumejob_3.conf

    7、操作hive

    8、此时/root/flume2文件夹中

    9、hdfs中

    执行

    hdfs dfs -cat /flume2/20181125/20/flume2-.1543149406953.tmp

    文件flume2-.1543149406953.tmp过一会就变成flume2-.1543149406953

     10、至此,实现了监控hive.log文件,同时产生两个channel,一个channel对应的sink存储到hdfs中,另外一个channel对应的sink存储到本地。

  • 相关阅读:
    js实现点击隐藏图片
    绝对定位给图片四角加上图片修饰
    雪碧图实现登陆页面
    弹性盒模型
    数组练习--求数组和,平均值,最大值,最小值
    h5与c3权威指南笔记--css3结构性伪类选择器root,not,empty,target
    h5与c3权威指南笔记--css3新属性选择器
    闲聊Java里的随机数
    Python之简单抓取豆瓣读书信息
    中本聪比特币论文
  • 原文地址:https://www.cnblogs.com/areyouready/p/10017363.html
Copyright © 2011-2022 走看看