zoukankan      html  css  js  c++  java
  • (转载)多线程:C#线程同步lock,Monitor,Mutex,同步事件和等待句柄(下)

    前两篇简单介绍了线程同步lock,Monitor,同步事件EventWaitHandler,互斥体Mutex的基本用法,在此基础上,我们对它们用法进行比较,并给出什么时候需要锁什么时候不需要的几点建议。最后,介绍几个FCL中线程安全的类,集合类的锁定方式等,做为对线程同步系列的完善和补充。

          1.几种同步方法的区别

          lock和Monitor是.NET用一个特殊结构实现的,Monitor对象是完全托管的、完全可移植的,并且在操作系统资源要求方面可能更为有效,同步速度较快,但不能跨进程同步。lock(Monitor.Enter和Monitor.Exit方法的封装),主要作用是锁定临界区,使临界区代码只能被获得锁的线程执行。Monitor.Wait和Monitor.Pulse用于线程同步,类似信号操作,个人感觉使用比较复杂,容易造成死锁。

          互斥体Mutex和事件对象EventWaitHandler属于内核对象,利用内核对象进行线程同步,线程必须要在用户模式和内核模式间切换,所以一般效率很低,但利用互斥对象和事件对象这样的内核对象,可以在多个进程中的各个线程间进行同步

          互斥体Mutex类似于一个接力棒,拿到接力棒的线程才可以开始跑,当然接力棒一次只属于一个线程(Thread Affinity),如果这个线程不释放接力棒(Mutex.ReleaseMutex),那么没办法,其他所有需要接力棒运行的线程都知道能等着看热闹。

          EventWaitHandle 类允许线程通过发信号互相通信。通常,一个或多个线程在 EventWaitHandle 上阻止,直到一个未阻止的线程调用 Set 方法,以释放一个或多个被阻止的线程。

          2.什么时候需要锁定

          首先要理解锁定是解决竞争条件的,也就是多个线程同时访问某个资源,造成意想不到的结果。比如,最简单的情况是,一个计数器,两个线程 同时加一,后果就是损失了一个计数,但相当频繁的锁定又可能带来性能上的消耗,还有最可怕的情况死锁。那么什么情况下我们需要使用锁,什么情况下不需要 呢?

          1)只有共享资源才需要锁定
          只有可以被多线程访问的共享资源才需要考虑锁定,比如静态变量,再比如某些缓存中的值,而属于线程内部的变量不需要锁定。

          2)多使用lock,少用Mutex
          如果你一定要使用锁定,请尽量不要使用内核模块的锁定机制,比如.NET的Mutex,Semaphore,AutoResetEvent和ManuResetEvent,使用这样的机制涉及到了系统在用户模式和内核模式间的切换,性能差很多,但是他们的优点是可以跨进程同步线程,所以应该清 楚的了解到他们的不同和适用范围。

          3)了解你的程序是怎么运行的
          实际上在web开发中大多数逻辑都是在单个线程中展开的,一个请求都会在一个单独的线程中处理,其中的大部分变量都是属于这个线程的,根本没有必要考虑锁定,当然对于ASP.NET中的Application对象中的数据,我们就要考虑加锁了。

          4)把锁定交给数据库
          数 据库除了存储数据之外,还有一个重要的用途就是同步,数据库本身用了一套复杂的机制来保证数据的可靠和一致性,这就为我们节省了很多的精力。保证了数据源 头上的同步,我们多数的精力就可以集中在缓存等其他一些资源的同步访问上了。通常,只有涉及到多个线程修改数据库中同一条记录时,我们才考虑加锁。

          5)业务逻辑对事务和线程安全的要求
          这 条是最根本的东西,开发完全线程安全的程序是件很费时费力的事情,在电子商务等涉及金融系统的案例中,许多逻辑都必须严格的线程安全,所以我们不得不牺牲 一些性能,和很多的开发时间来做这方面的工作。而一般的应用中,许多情况下虽然程序有竞争的危险,我们还是可以不使用锁定,比如有的时候计数器少一多一, 对结果无伤大雅的情况下,我们就可以不用去管它。

          3.InterLocked类

          Interlocked 类提供了同步对多个线程共享的变量的访问的方法。如果该变量位于共享内存中,则不同进程的线程就可以使用该机制。互锁操作是原子的,即整个操作是不能由相 同变量上的另一个互锁操作所中断的单元。这在抢先多线程操作系统中是很重要的,在这样的操作系统中,线程可以在从某个内存地址加载值之后但是在有机会更改 和存储该值之前被挂起。

          我们来看一个InterLock.Increment()的例子,该方法以原子的形式递增指定变量并存储结果,示例如下:


        class InterLockedTest
        {
           
    public static Int64 i = 0;

           
    public static void Add()
            {
               
    for (int i = 0; i < 100000000; i++)
                {
                    Interlocked.Increment(
    ref InterLockedTest.i);
                   
    //InterLockedTest.i = InterLockedTest.i + 1;
                }
            }


           
    public static void Main(string[] args)
            {
                Thread t1
    = new Thread(new ThreadStart(InterLockedTest.Add));
                Thread t2
    = new Thread(new ThreadStart(InterLockedTest.Add));

                t1.Start();
                t2.Start();

                t1.Join();
                t2.Join();

                Console.WriteLine(InterLockedTest.i.ToString());
                Console.Read();
            }
        }

          输出结果200000000,如果InterLockedTest.Add()方法中用注释掉的语句代替Interlocked.Increment()方法,结果将不可预知,每次执行结果不同。InterLockedTest.Add()方法保证了加1操作的原子性,功能上相当于自动给加操作使用了lock锁。同时我们也注意到InterLockedTest.Add()用时比直接用+号加1要耗时的多,所以说加锁资源损耗还是很明显的。

          另外InterLockedTest类还有几个常用方法,具体用法可以参考MSDN上的介绍。

          4.集合类的同步

          .NET在一些集合类,比如Queue、ArrayList、HashTable和Stack,已经提供了一个供lock使用的对象SyncRoot。用Reflector查看了SyncRoot属性(Stack.SynchRoot略有不同)的源码如下:


    public virtual object SyncRoot
    {
       
    get
        {
           
    if (this._syncRoot == null)
            {
               
    //如果_syncRoot和null相等,将new object赋值给_syncRoot
               
    //Interlocked.CompareExchange方法保证多个线程在使用syncRoot时是线程安全的
                Interlocked.CompareExchange(ref this._syncRoot, new object(), null);
            }
           
    return this._syncRoot;
        }
    }

          这里要特别注意的是MSDN提到:从头到尾对一个集合进行枚举本质上并不是一个线程安全的过程。即使一个集合已进行同步,其他线程仍可以修改该集合,这将导致枚举数引发异常。若要在枚举过程中保证线程安全,可以在整个枚举过程中锁定集合,或者捕捉由于其他线程进行的更改而引发的异常。应该使用下面的代码:


        Queue q = new Queue();
       
    lock (q.SyncRoot)
        {
           
    foreach (object item in q)
            {
               
    //do something
            }
        }

          还有一点需要说明的是,集合类提供了一个是和同步相关的方 法Synchronized,该方法返回一个对应的集合类的wrapper类,该类是线程安全的,因为他的大部分方法都用lock关键字进行了同步处理。 如HashTable的Synchronized返回一个新的线程安全的HashTable实例,代码如下:


        //在多线程环境中只要我们用下面的方式实例化HashTable就可以了
        Hashtable ht = Hashtable.Synchronized(new Hashtable());

       
    //以下代码是.NET Framework Class Library实现,增加对Synchronized的认识
        [HostProtection(SecurityAction.LinkDemand, Synchronization=true)]
       
    public static Hashtable Synchronized(Hashtable table)
        {
           
    if (table == null)
            {
               
    throw new ArgumentNullException("table");
            }
           
    return new SyncHashtable(table);
        }


       
    //SyncHashtable的几个常用方法,我们可以看到内部实现都加了lock关键字保证线程安全
        public override void Add(object key, object value)
        {
           
    lock (this._table.SyncRoot)
            {
               
    this._table.Add(key, value);
            }
        }

       
    public override void Clear()
        {
           
    lock (this._table.SyncRoot)
            {
               
    this._table.Clear();
            }
        }

       
    public override void Remove(object key)
        {
           
    lock (this._table.SyncRoot)
            {
               
    this._table.Remove(key);
            }
        }

          线程同步是一个非常复杂的话题,这里只是根据公司的一个项目把相关的知识整理出来,作为工作的一种总结。这些同步方法的使用场景是怎样的?究竟有哪些细微的差别?还有待于进一步的学习和实践。

  • 相关阅读:
    (转)深入理解C语言指针的奥秘
    (转)C语言在哪里?
    [转]12个摄影基本法则
    光圈使用
    ArcIMS 连接器.NET Link 使用方法
    在asp.net中使用xml文件的两种类型及用法
    利用XSL双向转换XML文档
    光圈 暴光 快门对比
    保护眼睛的电脑颜色设置
    vb.net2005动态添加网页控件的事件
  • 原文地址:https://www.cnblogs.com/arraylist/p/2131697.html
Copyright © 2011-2022 走看看