我们知道WCF有3种典型的对service instance进行实例化的方式,他们分别与WCF的三种InstanceContextMode相匹配,他们分别是PerCall,PerSession和Single。PerCall为每次service invocation创建一个新的service instance; 而PerSession则让一个service instance处理来自通过各Session(一般是同一个proxy对象)的调用请求;而Single则是用同一个service instance来处理所有的调用请求。SOA的一个原则是创建无状态的service(stateless service),PerCall应该是我们经常使用的实例化方式,尽管PerSession是默认的InstanceContextMode。
但是对于PerCall这种实例化方式来说,为每次service请求都创建新的service instance,有时候显得有点极端,频繁的对象创建会对系统的性能造成一定的影响。我们能够以池的机制(Pooling)进行对象的获取和创建呢:当service调用请求抵达service端,先试图从池中获取一个没有被使用的service instance,如何找到,直接获取该对象;否则创建新的对象。当service instance对象执行完毕,将对象释放到池中以供下次service 调用使用。
一、实现原理
我们今天就来试着实现这样的service instance提供机制。主要的实现原理是:让所有的service实现一个公共的interface(IPooledObject),定义了IsBusy的属性表明该对象当前是否正在被使用;为每个service type维护一个weak reference列表,每个weak reference对应一个确定的service instance,我们姑且将该weak reference列表成为该service type对应的对象池(object pool);为了处理service的调用需要提供一个确定的service instance的时候,遍历对象池,通过weak reference的Target属性找出一个可用的service instance(IsBusy=false)。如何顺利找到这样的service instance,则将其从对象池取出,将IsBusy属性设为true;如何没有找到,则通过反射创建一个新的service instance,将IsBusy设为true,同时利用weak reference将其包装,并将该weak reference加入到对象池中,最后返回该service instance用于处理service 调用。当service 调用结束,不是直接将其dispose掉,而是将其释放回对象池,供后续的service调用使用。
由于我们通过weak reference来实现对象池,weak reference引用的service instance是可以被GC回收的,这样做的好处是充分利用的GC的垃圾回收功能,避免不需要的service instance常驻内容,带来不必要的内存压力。此外,正是因为weak reference引用的service instance是可以被GC回收,我们需要一个后台的任务定期地将已经被回收的weak reference清除掉。
和本系列前两篇文章(WCF和Unity Appliation Block集成;WCF和Policy Injection Application Block集成)一样,涉及的是service instance的提供的问题,所以,我们也是通过自定义InstanceProvider来实现以对象池的机制创建service instance的目的。
四、PooledInstnaceProvider的创建
在创建我们自定义的InstanceProvider之前,我们先来介绍几个辅助的class:
I、IPooledObject
1: namespace Artech.WCFExtensions
2: {
3: public interface IPooledObject
4: {
5: bool IsBusy
6: { get; set; }
7: }
8: }
由于我们要判断service instance是否可用,我们让所有的service type实现IPooledObject interface。IPooledObject 仅仅定义一个bool类型的属性:IsBusy。通过该属性判断service instance是否正在被使用。
II、WeakReferenceCollection和WeakReferenceDictionary
1: namespace Artech.WCFExtensions
2: {
3: public class WeakReferenceCollection:List<WeakReference>
4: {}
5:
6: public class WeakReferenceDictionary : Dictionary<Type, WeakReferenceCollection>
7: {}
8: }
WeakReferenceCollection仅仅是WeakReference的列表,WeakReferenceDictionary 则是key为Type,value为WeakReferenceCollection的dictionary。在提供service instance的时候,就是根据service type为key找到对应的WeakReferenceCollection。
III、PooledInstanceLocator
1: namespace Artech.WCFExtensions
2: {
3: public static class PooledInstanceLocator
4: {
5: internal static WeakReferenceDictionary ServiceInstancePool
6: { get; set; }
7:
8: static PooledInstanceLocator()
9: {
10: ServiceInstancePool = new WeakReferenceDictionary();
11: }
12:
13: public static IPooledObject GetInstanceFromPool(Type serviceType)
14: {
15: if(!serviceType.GetInterfaces().Contains(typeof(IPooledObject)))
16: {
17: throw new InvalidCastException("InstanceType must implement Artech.WCFExtensions.IPooledInstance");
18: }
19:
20: if (!ServiceInstancePool.ContainsKey(serviceType))
21: {
22: ServiceInstancePool[serviceType] = new WeakReferenceCollection();
23: }
24:
25: WeakReferenceCollection instanceReferenceList = ServiceInstancePool[serviceType] ;
26:
27: lock (serviceType)
28: {
29: IPooledObject serviceInstance =null;
30: foreach (WeakReference weakReference in instanceReferenceList)
31: {
32: serviceInstance = weakReference.Target as IPooledObject;
33: if (serviceInstance != null && !serviceInstance.IsBusy)
34: {
35: serviceInstance.IsBusy = true;
36: return serviceInstance;
37: }
38: }
39:
40: serviceInstance = Activator.CreateInstance(serviceType) as IPooledObject;
41: serviceInstance.IsBusy = true;
42: instanceReferenceList.Add(new WeakReference(serviceInstance));
43: return serviceInstance;
44: }
45: }
46:
47: public static void Scavenge()
48: {
49: foreach (Type serviceType in ServiceInstancePool.Keys)
50: {
51: lock (serviceType)
52: {
53: WeakReferenceCollection instanceReferenceList = ServiceInstancePool[serviceType];
54: for (int i = instanceReferenceList.Count - 1; i > -1; i--)
55: {
56: if (instanceReferenceList[i].Target == null)
57: {
58: instanceReferenceList.RemoveAt(i);
59: }
60: }
61:
62: }
63: }
64: }
65:
66: public static void ReleaseInstanceToPool(IPooledObject instance)
67: {
68: instance.IsBusy = false;
69: }
70: }
71: }
72:
PooledInstanceLocator实现了3基于对象池的功能:从对象池中获取对象(GetInstanceFromPool);将对象释放到池中(ReleaseInstanceToPool);清理被GC回收的weak reference(Scavenge)。代码很简单,我就不再一一介绍了。有一点需要注意的,由于PooledInstanceLocator工作在一个多线程环境下,保证线程的同步时最重要的。在本例中为了简便,我直接对service type对象进行枷锁,由于本例比较简单,不会引起什么问题。在实际的项目开发中,如何对Type对象进行加锁就需要三思了,因为type对象一个全局对象(可以参考的我的文章:What is type in managed heap),对其加锁很容易引起死锁。
IV、自定义InstanceProvider:PooledInstanceProvider
有了PooledInstanceLocator,我们的InstanceProvider就显得很简单了:
1: namespace Artech.WCFExtensions
2: {
3: class PooledInstanceProvider : IInstanceProvider
4: {
5:
6: public object GetInstance(InstanceContext instanceContext, Message message)
7: {
8: return PooledInstanceLocator.GetInstanceFromPool(instanceContext.Host.Description.ServiceType);
9: }
10:
11: public object GetInstance(InstanceContext instanceContext)
12: {
13: return this.GetInstance(instanceContext, null);
14: }
15:
16: public void ReleaseInstance(InstanceContext instanceContext, object instance)
17: {
18: PooledInstanceLocator.ReleaseInstanceToPool(instance as IPooledObject);
19: }
20: }
21: }
在GetInstance和ReleaseInstance,直接调用调用PooledInstanceLocator的GetInstanceFromPool和ReleaseInstanceToPool。
V、为自定义InstanceProvider定义Behavior
对于使用自定义InstanceProvider,我们一般可以通过Contract Behavior和Endpoint Behavior来实现,由于定义Behavior不是本篇文章的重点,在这里我仅仅通过Contract Behavior进行扩展这一种方式。
1: namespace Artech.WCFExtensions
2: {
3: public class PooledInstanceBehaviorAttribute : Attribute, IContractBehavior, IContractBehaviorAttribute
4: {
5: public void AddBindingParameters(ContractDescription contractDescription, ServiceEndpoint endpoint, BindingParameterCollection bindingParameters){ }
6: public void ApplyClientBehavior(ContractDescription contractDescription, ServiceEndpoint endpoint, ClientRuntime clientRuntime){ }
7: public void ApplyDispatchBehavior(ContractDescription contractDescription, ServiceEndpoint endpoint, DispatchRuntime dispatchRuntime)
8: {
9: dispatchRuntime.InstanceProvider = new PooledInstanceProvider();
10: }
11: public void Validate(ContractDescription contractDescription, ServiceEndpoint endpoint){ }
12: public Type TargetContract
13: {
14: get { return null; }
15: }
16: }
17: }
再ApplyDispatchBehavior中将DispatchRuntime 的InstanceProvider 设置成我们定义的PooledInstanceProvider就可以了。
三、将PooledInstanceProvider应用到WCF应用中
现在我们就创建一个简单的WCF应用将看看我们自定义的InstanceProvider能给我们带来什么。我们照例创建如下图一样的4层结构:
I、Contract:Contracts.IService
1: namespace Contracts
2: {
3: [ServiceContract]
4: [PooledInstanceBehavior]
5: public interface IService : IPooledObject
6: {
7: [OperationContract(IsOneWay =true)]
8: void DoSomething();
9: }
10: }
通过custom attribute的方式将PooledInstanceBehaviorAttribute应用到service conntract。Iservice继承我们定义的IPooledObject interface。
II、Service:Services.Service
1: namespace Services
2: {
3: [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
4: public class Service : IService
5: {
6: static int count;
7: public Service()
8: {
9: Interlocked.Increment(ref count);
10: Console.WriteLine("{0}: Service instance is constructed!", count);
11: }
12: public void DoSomething(){ }
13: public bool IsBusy
14: { get; set; }
15: }
16: }
我们应用PerCall InstanceContextMode。由于我们需要检测的是service instance的创建,所以我们通过下面的代码判断service instance创建的次数。
1: public Service()
2: {
3: Interlocked.Increment(ref count);
4: Console.WriteLine("{0}: Service instance is constructed!", count);
5: }
III、Hosting
1: namespace Hosting
2: {
3: class Program
4: {
5: static Timer ScavengingTimer;
6:
7: static void Main(string[] args)
8: {
9: using (ServiceHost host = new ServiceHost(typeof(Service)))
10: {
11: host.Opened += delegate
12: {
13: Console.WriteLine("Service has been started up!");
14: };
15:
16: host.Open();
17:
18: ScavengingTimer = new Timer(delegate
19: {
20: PooledInstanceLocator.Scavenge();
21: }, null, 0, 5000);
22:
23: Console.Read();
24:
25: }
26: }
27: }
28: }
29:
除了对service进行Host之外,Main()方法还通过一个Timer对象实现对对象池的清理工作(调用PooledInstanceLocator.Scavenge();),时间间隔是5s。
下面是configuration:
1: <?xml version="1.0" encoding="utf-8" ?>
2: <configuration>
3: <system.serviceModel>
4: <services>
5: <service name="Services.Service">
6: <endpoint binding="basicHttpBinding" contract="Contracts.IService" />
7: <host>
8: <baseAddresses>
9: <add baseAddress="http://127.0.0.1/service" />
10: </baseAddresses>
11: </host>
12: </service>
13: </services>
14: </system.serviceModel>
15: </configuration>
IV、Client:Clients.
1: namespace Clients
2: {
3: class Program
4: {
5: static void Main(string[] args)
6: {
7: using (ChannelFactory<IService> channelFactory = new ChannelFactory<IService>("service"))
8: {
9: for (int i = 1; i <= 10; i++)
10: {
11: Console.WriteLine("{0}: invocate service!", i);
12: channelFactory.CreateChannel().DoSomething();
13: Thread.Sleep(1000);
14: }
15: }
16:
17: Console.Read();
18: }
19: }
20: }
在上面的代码中,我们通过for循环进行了10次service调用。每次间隔1s.我们看看运行的结果,这是client端的运行结果:
这是service端的结果:
可见service instance只创建了一次。因为方法执行太快,方法结束后service instance马上释放到对象池中,后续的调用一直使用的是同一个service instance。
然后我们把IService 的PooledInstanceBehavior注释掉。
1: namespace Contracts
2: {
3: [ServiceContract]
4: //[PooledInstanceBehavior]
5: public interface IService : IPooledObject
6: {
7: [OperationContract(IsOneWay =true)]
8: void DoSomething();
9: }
10: }
再次运行程序,service端将会得到下面的输出结果:
可见在没有运用PooledInstanceBehavior情况下,service instance的创建真正使“PerCall”。我们将PooledInstanceBehavior重新加上,然后通过在DoSomething方法中加上下面的代码延长该方法执行的时间:
1: namespace Services
2: {
3: [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
4: public class Service:IService
5: {
6: public void DoSomething()
7: {
8: Thread.Sleep(2000);
9: }
10: }
11: }
再次运行程序,service端的运行结果如下图所示
由于我们将DoSomething方法的执行延长至2s,在这种情况下,由于client端的service掉用的间隔是1s,所有当第二次service调用抵达之后,第一次创建的service instance还没有被释放,所以需要重新创建新的service instance。当第三次service调用时,第一个service instance已经释放,以此类推,永远只需要两个service instance。这和上面的结果一致。
上面的运行结果都是在GC没有进行垃圾回收的情况下的运行结果,如何GC参与了又会有怎样的行为表现呢?在Hosting中,我们通过另一个Timer定期地进行垃圾回收(间隔为500ms):
1: namespace Hosting
2: {
3: class Program
4: {
5: static Timer ScavengingTimer;
6: static Timer GCTimer;
7: static void Main(string[] args)
8: {
9: using (ServiceHost host = new ServiceHost(typeof(Service)))
10: {
11: host.Opened += delegate
12: {
13: Console.WriteLine("Service has been started up!");
14: };
15:
16: host.Open();
17:
18: ScavengingTimer = new Timer(delegate
19: {
20: PooledInstanceLocator.Scavenge();
21: }, null, 0, 5000);
22:
23: GCTimer = new Timer(delegate
24: {
25: GC.Collect();
26: }, null, 0, 500);
27:
28: Console.Read();
29:
30: }
31: }
32: }
33: }
34:
然后我们将serivice的DoSomething()操作执行时间缩短(比client调用service的间隔短:500ms),使得操作执行完毕后,还没有新的请求抵达,这样GC会将其垃圾回收。
1: namespace Services
2: {
3: [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
4: public class Service:IService
5: {
6:
7: #region IService Members
8:
9: public void DoSomething()
10: {
11: Thread.Sleep(500);
12: }
13:
14: #endregion
15: }
16: }
那么现在的输出结果将会是这样:
WCF后续之旅:
WCF后续之旅(1): WCF是如何通过Binding进行通信的
WCF后续之旅(2): 如何对Channel Layer进行扩展——创建自定义Channel
WCF后续之旅(3): WCF Service Mode Layer 的中枢—Dispatcher
WCF后续之旅(4):WCF Extension Point 概览
WCF后续之旅(5): 通过WCF Extension实现Localization
WCF后续之旅(6): 通过WCF Extension实现Context信息的传递
WCF后续之旅(7):通过WCF Extension实现和Enterprise Library Unity Container的集成
WCF后续之旅(8):通过WCF Extension 实现与MS Enterprise Library Policy Injection Application Block 的集成
WCF后续之旅(9):通过WCF的双向通信实现Session管理[Part I]
WCF后续之旅(9): 通过WCF双向通信实现Session管理[Part II]
WCF后续之旅(10): 通过WCF Extension实现以对象池的方式创建Service Instance
WCF后续之旅(11): 关于并发、回调的线程关联性(Thread Affinity)
WCF后续之旅(12): 线程关联性(Thread Affinity)对WCF并发访问的影响
WCF后续之旅(13): 创建一个简单的WCF SOAP Message拦截、转发工具[上篇]
WCF后续之旅(13):创建一个简单的SOAP Message拦截、转发工具[下篇]
WCF后续之旅(14):TCP端口共享
WCF后续之旅(15): 逻辑地址和物理地址
WCF后续之旅(16): 消息是如何分发到Endpoint的--消息筛选(Message Filter)
WCF后续之旅(17):通过tcpTracer进行消息的路由