给定$n,k$$(1leqslant n,kleqslant 10^9)$,计算$sumlimits _{i=1}^nk: mod:i$
通过观察易发现$k\%i=k-left lfloor frac{k}{i} ight floor*i$,因此我们考虑把$left lfloor frac{k}{i} ight floor$的值相同的$i$分成一组直接求和,复杂度为$O(sqrt{n})$。
整除分块原理(选自某dalao博客)
1 #include<bits/stdc++.h> 2 3 using namespace std; 4 typedef long long ll; 5 ll n,k; 6 7 int main() { 8 while(scanf("%lld%lld",&n,&k)==2) { 9 ll ans=0; 10 for(ll l=1,r; l<=n; l=r+1) { 11 ll t=k/l; 12 r=t&&k/t<n?k/t:n; 13 ans+=k*(r-l+1)-t*((l+r)*(r-l+1)/2); 14 } 15 printf("%lld ",ans); 16 } 17 return 0; 18 }