zoukankan      html  css  js  c++  java
  • leetcode84

     1 public class Solution
     2     {
     3         public int LargestRectangleArea(int[] hist)
     4         {
     5             // The main function to find the  
     6             // maximum rectangular area under  
     7             // given histogram with n bars  
     8             int n = hist.Length;
     9             // Create an empty stack. The stack  
    10             // holds indexes of hist[] array  
    11             // The bars stored in stack are always  
    12             // in increasing order of their heights.  
    13             Stack<int> s = new Stack<int>();
    14 
    15             int max_area = 0; // Initialize max area 
    16             int tp; // To store top of stack 
    17             int area_with_top; // To store area with top  
    18                                // bar as the smallest bar 
    19 
    20             // Run through all bars of 
    21             // given histogram  
    22             int i = 0;
    23             while (i < n)
    24             {
    25                 // If this bar is higher than the  
    26                 // bar on top stack, push it to stack  
    27                 if (s.Count == 0 || hist[s.Peek()] <= hist[i])
    28                 {
    29                     s.Push(i++);
    30                 }
    31 
    32                 // If this bar is lower than top of stack, 
    33                 // then calculate area of rectangle with  
    34                 // stack top as the smallest (or minimum   
    35                 // height) bar. 'i' is 'right index' for  
    36                 // the top and element before top in stack 
    37                 // is 'left index'  
    38                 else
    39                 {
    40                     tp = s.Peek(); // store the top index 
    41                     s.Pop(); // pop the top 
    42 
    43                     // Calculate the area with hist[tp] 
    44                     // stack as smallest bar  
    45                     area_with_top = hist[tp] *
    46                                    (s.Count == 0 ? i : i - s.Peek() - 1);
    47 
    48                     // update max area, if needed  
    49                     if (max_area < area_with_top)
    50                     {
    51                         max_area = area_with_top;
    52                     }
    53                 }
    54             }
    55 
    56             // Now pop the remaining bars from  
    57             // stack and calculate area with every  
    58             // popped bar as the smallest bar  
    59             while (s.Count > 0)
    60             {
    61                 tp = s.Peek();
    62                 s.Pop();
    63                 area_with_top = hist[tp] *
    64                                (s.Count == 0 ? i : i - s.Peek() - 1);
    65 
    66                 if (max_area < area_with_top)
    67                 {
    68                     max_area = area_with_top;
    69                 }
    70             }
    71 
    72             return max_area;
    73         }
    74     }

    参考:https://www.geeksforgeeks.org/largest-rectangle-under-histogram/

    补充一个python的实现:

     1 class Solution:
     2     def largestRectangleArea(self, heights: 'List[int]') -> int:
     3         heights.append(0)#默认最后补充一个0,方便统一处理
     4         n = len(heights)
     5         s = []
     6         max_area = 0#最大面积
     7         tp = 0#栈顶索引
     8         area_with_top = 0#临时面积
     9         i = 0
    10         while i < n:
    11             if len(s) == 0 or heights[s[-1]] <= heights[i]:
    12                 s.append(i)#栈内记录的是高度递增的索引
    13                 i += 1
    14             else:#遇到了高度比当前栈顶元素低的元素时,
    15                 tp = s.pop(-1)#清算栈内的元素的高度
    16                 if len(s) == 0:
    17                     area_with_top = heights[tp] * i#栈内没有元素,则宽度是i
    18                 else:#高度是栈顶元素,宽度是i - 1 - 前一个栈顶元素的索引
    19                     area_with_top = heights[tp] * (i - s[-1] - 1)
    20                 max_area = max(max_area,area_with_top)#更新最大值
    21         # while len(s) > 0:#处理栈内剩余元素,处理流程和遇到一个
    22         #     tp = s.pop(-1)
    23         #     if len(s) == 0:
    24         #         area_with_top = heights[tp] * i
    25         #     else:
    26         #         area_with_top = heights[tp] * (i - s[-1] - 1)
    27         #     max_area = max(max_area,area_with_top)
    28         return max_area

    采用了一个小技巧,在heights最后补一个0,则21行到27行的代码就可以省略了。

  • 相关阅读:
    1856: [Scoi2010]字符串(Catalan数)
    11.6NOIP模拟赛
    bzoj1257[CQOI2007]余数之和(除法分块)
    11.5NOIP模拟赛
    bzoj1048(记忆化搜索)
    置顶公告+更新日志
    CF585F Digits of Number Pi
    [SHOI2007]善意的投票
    [HEOI2015]最短不公共子串
    树形背包复杂度+P3177 [HAOI2015]树上染色
  • 原文地址:https://www.cnblogs.com/asenyang/p/10486614.html
Copyright © 2011-2022 走看看