1、概述
决策树及树集(算法)是用于机器学习任务的分类和回归的流行方法。决策树被广泛使用,因为它们易于解释,处理分类特征,扩展到多类分类设置,不需要特征缩放,并且能够捕获非线性和特征交互。树集分类算法(例如随机森林和boosting)在分类和回归任务中表现最佳。
spark.ml实现使用连续和分类特征,支持用于二元分类和多类分类以及用于回归的决策树。该实现按行对数据进行分区,从而允许对数百万甚至数十亿个实例进行分布式训练。
2、输入和输出
所有输出列都是可选的;要排除输出列,请将其对应的Param设置为空字符串。
Input Columns
Param name | Type(s) | Default | Description |
---|---|---|---|
labelCol | Double | "label" | Label to predict |
featuresCol | Vector | "features" | Feature vector |
Output Columns
Param name | Type(s) | Default | Description | Notes |
---|---|---|---|---|
predictionCol | Double | "prediction" | Predicted label | |
rawPredictionCol | Vector | "rawPrediction" | Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction | Classification only |
probabilityCol | Vector | "probability" | Vector of length # classes equal to rawPrediction normalized to a multinomial distribution | Classification only |
varianceCol | Double | The biased sample variance of prediction | Regression only |
3、code
package com.home.spark.ml import org.apache.spark.SparkConf import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier} import org.apache.spark.ml.evaluation.{MulticlassClassificationEvaluator, RegressionEvaluator} import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer} import org.apache.spark.ml.linalg.{Vector, Vectors} import org.apache.spark.ml.regression.DecisionTreeRegressor import org.apache.spark.sql.{Dataset, Row, SparkSession} object Ex_DecisionTree { def main(args: Array[String]): Unit = { val conf: SparkConf = new SparkConf(true).setMaster("local[2]").setAppName("spark ml") val spark = SparkSession.builder().config(conf).getOrCreate() //rdd转换成df或者ds需要SparkSession实例的隐式转换 //导入隐式转换,注意这里的spark不是包名,而是SparkSession的对象名 import spark.implicits._ val data = spark.sparkContext.textFile("input/iris.data.txt") .map(_.split(",")) .map(a => Iris( Vectors.dense(a(0).toDouble, a(1).toDouble, a(2).toDouble, a(3).toDouble), a(4)) ).toDF() data.createOrReplaceTempView("iris") val df = spark.sql("select * from iris") df.map(r => r(1) + " : " + r(0)).collect().take(10).foreach(println) ////对特征列和标签列进行索引转换 val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df) val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures") .setMaxCategories(4).fit(df) //决策树分类器 val dtClassifier = new DecisionTreeClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures") //将预测的类别重新转成字符型 val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictionLabel").setLabels(labelIndexer.labels) //将原数据集拆分成两个部分,一部分用于训练,一部分用于测试 val Array(trainingData, testData): Array[Dataset[Row]] = df.randomSplit(Array(0.7,0.3)) //建立工作流 val pipeline = new Pipeline().setStages(Array(labelIndexer,featureIndexer,dtClassifier,labelConverter)) //生成训练模型 val modelDecisionTreeClassifier = pipeline.fit(trainingData) //预测 val result = modelDecisionTreeClassifier.transform(testData) result.show(150,false) /** * 样本分为:正类样本和负类样本。 * TP:被分类器正确分类的正类样本数。 * TN: 被分类器正确分类的负类样本数。 * FP: 被分类器错误分类的正类样本数。(本来是负,被预测为正) ---------->正 * FN: 被分类器错误分类的负类样本数。 (本来是正, 被预测为负) ---------->负 * * 准确率(Accuracy ACC) * 总样本数=TP+TN+FP+FN * ACC=(TP+TN)/(总样本数) * 该评价指标主要针对分类均匀的数据集。 */ val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction") .setMetricName("accuracy") val accuracy: Double = evaluator.evaluate(result) println("Accuracy = " + accuracy) /** * 精确率(Precision 查准率) * Precision = TP / (TP+ FP) 准确率,表示模型预测为正样本的样本中真正为正的比例 */ val evaluator2 = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction") .setMetricName("weightedPrecision") val weightedPrecision: Double = evaluator2.evaluate(result) println("weightedPrecision = " + weightedPrecision) /** * 召回率(查全率) * Recall = TP /(TP + FN) 召回率,表示模型准确预测为正样本的数量占所有正样本数量的比例 */ val evaluator3 = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction") .setMetricName("weightedRecall") val weightedRecall: Double = evaluator3.evaluate(result) println("weightedRecall = " + weightedRecall) val treeModel = modelDecisionTreeClassifier.stages(2).asInstanceOf[DecisionTreeClassificationModel] println("Learned classification tree model: " + treeModel.toDebugString) //决策树回归器 val dtRegressor = new DecisionTreeRegressor().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures") val pipelineRegressor = new Pipeline() .setStages(Array(labelIndexer,featureIndexer,dtRegressor,labelConverter)) val modelRegressor = pipelineRegressor.fit(trainingData) val result2 = modelRegressor.transform(testData) result2.show(150,false) //评估 val regressionEvaluator = new RegressionEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction") .setMetricName("rmse") val rmse = regressionEvaluator.evaluate(result2) println("rmse = " + rmse) spark.stop() } } case class Iris(features: Vector, label: String)