zoukankan      html  css  js  c++  java
  • LA 3704 Cellular Automaton

    题意概述:

    等价地,本题可以转化为下面的问题:

    考虑$n imes n$的$0-1$矩阵$A$,在第$i$行上第$[-d+i, d+i]$(模$n$意义下)列对应的元素为$1$,其余为$0$。求$A^k$。

    数据范围:

    $n leq 500, k leq 10000000, d < frac{n}{2} $。

    分析:

    很容易想到矩阵快速幂$O(n^3log(k))$的解法,但是很可惜,矩阵有点大,用通用方法难免超时。尝试计算矩阵较小的幂,发现得到的矩阵的每一行

    都可由上一行循环右移$1$位得到。因此只计算一行就以为计算出整个矩阵,因此复杂度降为$O(n^2log(k))$,可以通过。

      1 #include <algorithm>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <string>
      5 #include <queue>
      6 #include <map>
      7 #include <set>
      8 #include <ctime>
      9 #include <cmath>
     10 #include <iostream>
     11 #include <assert.h>
     12 #define PI acos(-1.)
     13 #pragma comment(linker, "/STACK:102400000,102400000")
     14 #define max(a, b) ((a) > (b) ? (a) : (b))
     15 #define min(a, b) ((a) < (b) ? (a) : (b))
     16 #define mp make_pair
     17 #define st first
     18 #define nd second
     19 #define keyn (root->ch[1]->ch[0])
     20 #define lson (u << 1)
     21 #define rson (u << 1 | 1)
     22 #define pii pair<int, int>
     23 #define pll pair<ll, ll>
     24 #define pb push_back
     25 #define type(x) __typeof(x.begin())
     26 #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
     27 #define FOR(i, s, t) for(int i = (s); i <= (t); i++)
     28 #define ROF(i, t, s) for(int i = (t); i >= (s); i--)
     29 #define dbg(x) cout << x << endl
     30 #define dbg2(x, y) cout << x << " " << y << endl
     31 #define clr(x, i) memset(x, (i), sizeof(x))
     32 #define maximize(x, y) x = max((x), (y))
     33 #define minimize(x, y) x = min((x), (y))
     34 #define low_bit(x) ((x) & (-x))
     35 using namespace std;
     36 typedef long long ll;
     37 const int int_inf = 0x3f3f3f3f;
     38 const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
     39 const int INT_INF = (int)((1ll << 31) - 1);
     40 const double double_inf = 1e30;
     41 const double eps = 1e-14;
     42 typedef unsigned long long ul;
     43 inline int readint(){
     44     int x;
     45     scanf("%d", &x);
     46     return x;
     47 }
     48 inline int readstr(char *s){
     49     scanf("%s", s);
     50     return strlen(s);
     51 }
     52 //Here goes 2d geometry templates
     53 struct Point{
     54     double x, y;
     55     Point(double x = 0, double y = 0) : x(x), y(y) {}
     56 };
     57 typedef Point Vector;
     58 Vector operator + (Vector A, Vector B){
     59     return Vector(A.x + B.x, A.y + B.y);
     60 }
     61 Vector operator - (Point A, Point B){
     62     return Vector(A.x - B.x, A.y - B.y);
     63 }
     64 Vector operator * (Vector A, double p){
     65     return Vector(A.x * p, A.y * p);
     66 }
     67 Vector operator / (Vector A, double p){
     68     return Vector(A.x / p, A.y / p);
     69 }
     70 bool operator < (const Point& a, const Point& b){
     71     return a.x < b.x || (a.x == b.x && a.y < b.y);
     72 }
     73 int dcmp(double x){
     74     if(abs(x) < eps) return 0;
     75     return x < 0 ? -1 : 1;
     76 }
     77 bool operator == (const Point& a, const Point& b){
     78     return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
     79 }
     80 double Dot(Vector A, Vector B){
     81     return A.x * B.x + A.y * B.y;
     82 }
     83 double Len(Vector A){
     84     return sqrt(Dot(A, A));
     85 }
     86 double Angle(Vector A, Vector B){
     87     return acos(Dot(A, B) / Len(A) / Len(B));
     88 }
     89 double Cross(Vector A, Vector B){
     90     return A.x * B.y - A.y * B.x;
     91 }
     92 double Area2(Point A, Point B, Point C){
     93     return Cross(B - A, C - A);
     94 }
     95 Vector Rotate(Vector A, double rad){
     96     //rotate counterclockwise
     97     return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
     98 }
     99 Vector Normal(Vector A){
    100     double L = Len(A);
    101     return Vector(-A.y / L, A.x / L);
    102 }
    103 void Normallize(Vector &A){
    104     double L = Len(A);
    105     A.x /= L, A.y /= L;
    106 }
    107 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
    108     Vector u = P - Q;
    109     double t = Cross(w, u) / Cross(v, w);
    110     return P + v * t;
    111 }
    112 double DistanceToLine(Point P, Point A, Point B){
    113     Vector v1 = B - A, v2 = P - A;
    114     return abs(Cross(v1, v2)) / Len(v1);
    115 }
    116 double DistanceToSegment(Point P, Point A, Point B){
    117     if(A == B) return Len(P - A);
    118     Vector v1 = B - A, v2 = P - A, v3 = P - B;
    119     if(dcmp(Dot(v1, v2)) < 0) return Len(v2);
    120     else if(dcmp(Dot(v1, v3)) > 0) return Len(v3);
    121     else return abs(Cross(v1, v2)) / Len(v1);
    122 }
    123 Point GetLineProjection(Point P, Point A, Point B){
    124     Vector v = B - A;
    125     return A + v * (Dot(v, P - A) / Dot(v, v));
    126 }
    127 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){
    128     //Line1:(a1, a2) Line2:(b1,b2)
    129     double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
    130            c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
    131     return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    132 }
    133 bool OnSegment(Point p, Point a1, Point a2){
    134     return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 -p)) < 0;
    135 }
    136 Vector GetBisector(Vector v, Vector w){
    137     Normallize(v), Normallize(w);
    138     return Vector((v.x + w.x) / 2, (v.y + w.y) / 2);
    139 }
    140 
    141 bool OnLine(Point p, Point a1, Point a2){
    142     Vector v1 = p - a1, v2 = a2 - a1;
    143     double tem = Cross(v1, v2);
    144     return dcmp(tem) == 0;
    145 }
    146 struct Line{
    147     Point p;
    148     Vector v;
    149     Point point(double t){
    150         return Point(p.x + t * v.x, p.y + t * v.y);
    151     }
    152     Line(Point p, Vector v) : p(p), v(v) {}
    153 };
    154 struct Circle{
    155     Point c;
    156     double r;
    157     Circle(Point c, double r) : c(c), r(r) {}
    158     Circle(int x, int y, int _r){
    159         c = Point(x, y);
    160         r = _r;
    161     }
    162     Point point(double a){
    163         return Point(c.x + cos(a) * r, c.y + sin(a) * r);
    164     }
    165 };
    166 int GetLineCircleIntersection(Line L, Circle C, double &t1, double& t2, vector<Point>& sol){
    167     double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
    168     double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
    169     double delta = f * f - 4 * e * g;
    170     if(dcmp(delta) < 0) return 0;
    171     if(dcmp(delta) == 0){
    172         t1 = t2 = -f / (2 * e); sol.pb(L.point(t1));
    173         return 1;
    174     }
    175     t1 = (-f - sqrt(delta)) / (2 * e); sol.pb(L.point(t1));
    176     t2 = (-f + sqrt(delta)) / (2 * e); sol.pb(L.point(t2));
    177     return 2;
    178 }
    179 double angle(Vector v){
    180     return atan2(v.y, v.x);
    181     //(-pi, pi]
    182 }
    183 int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){
    184     double d = Len(C1.c - C2.c);
    185     if(dcmp(d) == 0){
    186         if(dcmp(C1.r - C2.r) == 0) return -1; //two circle duplicates
    187         return 0; //two circles share identical center
    188     }
    189     if(dcmp(C1.r + C2.r - d) < 0) return 0; //too close
    190     if(dcmp(abs(C1.r - C2.r) - d) > 0) return 0; //too far away
    191     double a = angle(C2.c - C1.c); // angle of vector(C1, C2)
    192     double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
    193     Point p1 = C1.point(a - da), p2 = C1.point(a + da);
    194     sol.pb(p1);
    195     if(p1 == p2) return 1;
    196     sol.pb(p2);
    197     return 2;
    198 }
    199 int GetPointCircleTangents(Point p, Circle C, Vector* v){
    200     Vector u = C.c - p;
    201     double dist = Len(u);
    202     if(dist < C.r) return 0;//p is inside the circle, no tangents
    203     else if(dcmp(dist - C.r) == 0){
    204         // p is on the circles, one tangent only
    205         v[0] = Rotate(u, PI / 2);
    206         return 1;
    207     }else{
    208         double ang = asin(C.r / dist);
    209         v[0] = Rotate(u, -ang);
    210         v[1] = Rotate(u, +ang);
    211         return 2;
    212     }
    213 }
    214 int GetCircleCircleTangents(Circle A, Circle B, Point* a, Point* b){
    215     //a[i] store point of tangency on Circle A of tangent i
    216     //b[i] store point of tangency on Circle B of tangent i
    217     //six conditions is in consideration
    218     int cnt = 0;
    219     if(A.r < B.r) { swap(A, B); swap(a, b); }
    220     int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
    221     int rdiff = A.r - B.r;
    222     int rsum = A.r + B.r;
    223     if(d2 < rdiff * rdiff) return 0; // one circle is inside the other
    224     double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
    225     if(d2 == 0 && A.r == B.r) return -1; // two circle duplicates
    226     if(d2 == rdiff * rdiff){ // internal tangency
    227         a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
    228         return 1;
    229     }
    230     double ang = acos((A.r - B.r) / sqrt(d2));
    231     a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang);
    232     a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang);
    233     if(d2 == rsum * rsum){
    234         //one internal tangent
    235         a[cnt] = A.point(base);
    236         b[cnt++] = B.point(base + PI);
    237     }else if(d2 > rsum * rsum){
    238         //two internal tangents
    239         double ang = acos((A.r + B.r) / sqrt(d2));
    240         a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang + PI);
    241         a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang + PI);
    242     }
    243     return cnt;
    244 }
    245 Point ReadPoint(){
    246     double x, y;
    247     scanf("%lf%lf", &x, &y);
    248     return Point(x, y);
    249 }
    250 Circle ReadCircle(){
    251     double x, y, r;
    252     scanf("%lf%lf%lf", &x, &y, &r);
    253     return Circle(x, y, r);
    254 }
    255 //Here goes 3d geometry templates
    256 struct Point3{
    257     double x, y, z;
    258     Point3(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}
    259 };
    260 typedef Point3 Vector3;
    261 Vector3 operator + (Vector3 A, Vector3 B){
    262     return Vector3(A.x + B.x, A.y + B.y, A.z + B.z);
    263 }
    264 Vector3 operator - (Vector3 A, Vector3 B){
    265     return Vector3(A.x - B.x, A.y - B.y, A.z - B.z);
    266 }
    267 Vector3 operator * (Vector3 A, double p){
    268     return Vector3(A.x * p, A.y * p, A.z * p);
    269 }
    270 Vector3 operator / (Vector3 A, double p){
    271     return Vector3(A.x / p, A.y / p, A.z / p);
    272 }
    273 double Dot3(Vector3 A, Vector3 B){
    274     return A.x * B.x + A.y * B.y + A.z * B.z;
    275 }
    276 double Len3(Vector3 A){
    277     return sqrt(Dot3(A, A));
    278 }
    279 double Angle3(Vector3 A, Vector3 B){
    280     return acos(Dot3(A, B) / Len3(A) / Len3(B));
    281 }
    282 double DistanceToPlane(const Point3& p, const Point3 &p0, const Vector3& n){
    283     return abs(Dot3(p - p0, n));
    284 }
    285 Point3 GetPlaneProjection(const Point3 &p, const Point3 &p0, const Vector3 &n){
    286     return p - n * Dot3(p - p0, n);
    287 }
    288 Point3 GetLinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n){
    289     Vector3 v = p2 - p1;
    290     double t = (Dot3(n, p0 - p1) / Dot3(n, p2 - p1));
    291     return p1 + v * t;//if t in range [0, 1], intersection on segment
    292 }
    293 Vector3 Cross(Vector3 A, Vector3 B){
    294     return Vector3(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x);
    295 }
    296 double Area3(Point3 A, Point3 B, Point3 C){
    297     return Len3(Cross(B - A, C - A));
    298 }
    299 class cmpt{
    300 public:
    301     bool operator () (const int &x, const int &y) const{
    302         return x > y;
    303     }
    304 };
    305 
    306 int Rand(int x, int o){
    307     //if o set, return [1, x], else return [0, x - 1]
    308     if(!x) return 0;
    309     int tem = (int)((double)rand() / RAND_MAX * x) % x;
    310     return o ? tem + 1 : tem;
    311 }
    312 ////////////////////////////////////////////////////////////////////////////////////
    313 ////////////////////////////////////////////////////////////////////////////////////
    314 void data_gen(){
    315     srand(time(0));
    316     freopen("in.txt", "w", stdout);
    317     int times = 100;
    318     printf("%d
    ", times);
    319     while(times--){
    320         int r = Rand(1000, 1), a = Rand(1000, 1), c = Rand(1000, 1);
    321         int b = Rand(r, 1), d = Rand(r, 1);
    322         int m = Rand(100, 1), n = Rand(m, 1);
    323         printf("%d %d %d %d %d %d %d
    ", n, m, a, b, c, d, r);
    324     }
    325 }
    326 
    327 struct cmpx{
    328     bool operator () (int x, int y) { return x > y; }
    329 };
    330 int debug = 1;
    331 int dx[] = {-1, 1, 0, 0};
    332 int dy[] = {0, 0, -1, 1};
    333 //-------------------------------------------------------------------------
    334 const int maxn = 5e2 + 10;
    335 ll mt[maxn][maxn], res[maxn][maxn], tem[maxn][maxn];
    336 ll swp[maxn][maxn];
    337 ll P[maxn];
    338 ll ans[maxn];
    339 ll n, d, k, mod;
    340 void mt_power(ll p){
    341     clr(res, 0);
    342     FOR(i, 0, n - 1) res[i][i] = 1 % mod;
    343     memcpy(tem, mt, sizeof mt);
    344     while(p){
    345         if(p & 1){
    346 
    347             FOR(i, 0, 0) FOR(j, 0, n - 1){
    348                 ll _tem = 0;
    349                 FOR(k, 0, n - 1) _tem = (_tem + res[i][k] * tem[k][j] % mod) % mod;
    350                 swp[i][j] = _tem;
    351             }
    352             FOR(i, 1, n - 1) FOR(j, 0, n - 1) swp[i][j] = swp[i - 1][(j - 1 + n) % n];
    353             memcpy(res, swp, sizeof swp);
    354         }
    355         p >>= 1;
    356         FOR(i, 0, 0) FOR(j, 0, n - 1){
    357             ll _tem = 0;
    358             FOR(k, 0, n - 1) _tem = (_tem + tem[i][k] * tem[k][j] % mod) % mod;
    359             swp[i][j] = _tem;
    360         }
    361         FOR(i, 1, n - 1) FOR(j, 0, n - 1) swp[i][j] = swp[i - 1][(j - 1 + n) % n];
    362         memcpy(tem, swp, sizeof swp);
    363     }
    364 }
    365 
    366 //-------------------------------------------------------------------------
    367 int main(){
    368     //data_gen(); return 0;
    369     //C(); return 0;
    370     debug = 0;
    371     ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
    372     if(debug) freopen("in.txt", "r", stdin);
    373     //freopen("out.txt", "w", stdout);
    374     while(~scanf("%lld%lld%lld%lld", &n, &mod, &d, &k)){
    375         FOR(i, 0, n - 1) scanf("%lld", &P[i]), P[i] %= mod;
    376         clr(mt, 0);
    377         FOR(i, 0, n - 1){
    378             int l = i - d, r = i + d;
    379             FOR(j, l, r) mt[i][(j + n) % n] = 1;
    380         }
    381         mt_power(k);
    382         FOR(i, 0, n - 1){
    383             ans[i] = 0;
    384             FOR(j, 0, n - 1) ans[i] = (ans[i] + res[i][j] * P[j] % mod) % mod;
    385         }
    386         printf("%lld", ans[0]);
    387         FOR(i, 1, n - 1) printf(" %lld", ans[i]);
    388         printf("
    ");
    389     }
    390     //////////////////////////////////////////////////////////////////////////////////////////////////////////////
    391     return 0;
    392 }
    code:

    正确性证明:

    我们不妨将满足第$0$行元素关于第$0$列对称(模意义下)且第$i + 1$行可由第$i$行循环右移一位得到的方阵称为$Z$矩阵。

    我们试着证明若$A, B$均为$Z$矩阵,那么$AB$也是$Z$矩阵。

    证明:

    假设$A, B$均为$n imes n$矩阵,行列编号均为在模$n$意义下的值。

    令$C=AB$,为了证明$C$为$Z$矩阵,只需证明$C(i, j)=C(i - 1, j - 1)$ 且$C(0, i) = C(0, -i)$。

    由于$A$为$Z$矩阵,因此$A(i, j) = A(i - 1, j - 1) = A(0, j - i) = A(0, i - j) = A(j, i)$。

    所以$Z$矩阵是对称阵。考虑如下等式:

    $C(i,j)=sum_{k=0}^{n-1}{A(i, k)B(k, j)}=sum_{k=0}^{n-1}{A(0,k-i)B(0,j-k)}$

    $=sum_{k=-1}^{n-2}{A(0, k - i + 1)B(0,j - k - 1)}=sum_{k=0}^{n-1}{A(0, k - i + 1)B(0,j - k - 1)}$

    $sum_{k=0}^{n-1}{A(i-1,k)B(k,j-1)}=C(i-1,j-1)$

    此外:

    $C(0,i)=sum_{k=0}^{n-1}{A(0, k)B(k, i)}=sum_{k=0}^{n-1}{A(0, k)B(0, i-k)}$

    $=sum_{k=0}^{n-1}{A(0, k)B(0, k-i)}=sum_{k=0}^{n-1}{A(0, k)B(k,- i)}=C(0,-i)$

    于是得知$C$也是$Z$矩阵。

  • 相关阅读:
    Docker安装mysql
    解决SpringMVC+Thymeleaf中文乱码
    Web API 自动生成接口文档
    .Net Core 定时任务TimeJob
    使用 FTP 迁移 SQL Server 数据_迁移数据_快速入门(SQL Server)_云数据库 RDS 版-阿里云
    SQLServer · 最佳实践 · 如何将SQL Server 2012降级到2008 R2-博客-云栖社区-阿里云
    PNG文件转png8
    实战ASP.NET访问共享文件夹(含详细操作步骤)
    MVC JsonResult
    你必须知道的EF知识和经验
  • 原文地址:https://www.cnblogs.com/astoninfer/p/5709596.html
Copyright © 2011-2022 走看看