zoukankan      html  css  js  c++  java
  • LA 4998 Simple Encryption

    题意:输入正整数$K_1(K_1 leq 50000)$, 找一个$12$位正整数$K_2$(不能含有前导零)使得${K_1}^{K_2}equiv K_2(mod10^{12})$。

    例如,$K_1=78$和$99$时,$K_2$分别为$308646916096$和$817245479899$。

    分析:这题还是需要搜索来寻找答案的,直接构造很困难。事实上,${K_1}^{K_2}equiv K_2(mod10^{12})$,同时意味着:

    ${K_1}^{K_2}equiv K_2(mod10^{i}), i leq 12$。

    并且有$varphi(10^i)={10^i}(1-frac{1}{2})(1-frac{1}{5})=4cdot10^{i-1}$

    于是${K_1}^{K_2}mod {10^i}={K_1}^{K_2mod{varphi(10^i)}+varphi(10^i)}mod {10^i}$

    于是${K_1}^{K_2}mod {10^i}={K_1}^{K_3}mod {10^i}iffvarphi(10^i) | (K_3 - K_2)$

    满足上式的一个充分条件是$10^{i+1} | (K_3 - K_2)$

    也就是说,我们从低到高枚举$K_2$第$i$位的值,同时枚举其第$i+1$位的值,那么只要从最低位到第$i+1$位关于分解后对应模方程是合法的,

    在以后的构造过程中始终不会破坏当前的性质,因为高位的那些值对当前模取模值都是相同的。

    那么我们就可以边枚举边验证进行dfs了。

    交了之后发现TLE了。为了保证快速幂时乘法不溢出,又用了一个快速乘法操作,这个操作实际上是可以从$O(log(n))$优化到$O(1)$的。

    首先考虑模数最大为$10^{12}$,不超过$2$进制中的$40$位,那么我们可以将待乘值拆分成高$20$位与低$20$位,确保在乘法时始终不超过$60$位,

    用long long就不会溢出,具体如下:

    $acdot b mod n = a cdot ((b>>20)cdot(1<<20) + b & ((1 <<20) - 1)mod n$

    $= ((acdot(b>>20)mod n)cdot(1<<20)mod n) + (acdot(b & ((1 <<20) - 1))))mod n$

    这样优化之后就可以通过了。

      1 #include <algorithm>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <string>
      5 #include <queue>
      6 #include <map>
      7 #include <set>
      8 #include <ctime>
      9 #include <cmath>
     10 #include <iostream>
     11 #include <assert.h>
     12 #define PI acos(-1.)
     13 #pragma comment(linker, "/STACK:102400000,102400000")
     14 #define max(a, b) ((a) > (b) ? (a) : (b))
     15 #define min(a, b) ((a) < (b) ? (a) : (b))
     16 #define mp make_pair
     17 #define st first
     18 #define nd second
     19 #define keyn (root->ch[1]->ch[0])
     20 #define lson (u << 1)
     21 #define rson (u << 1 | 1)
     22 #define pii pair<int, int>
     23 #define pll pair<ll, ll>
     24 #define pb push_back
     25 #define type(x) __typeof(x.begin())
     26 #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
     27 #define FOR(i, s, t) for(int i = (s); i <= (t); i++)
     28 #define ROF(i, t, s) for(int i = (t); i >= (s); i--)
     29 #define dbg(x) cout << x << endl
     30 #define dbg2(x, y) cout << x << " " << y << endl
     31 #define clr(x, i) memset(x, (i), sizeof(x))
     32 #define maximize(x, y) x = max((x), (y))
     33 #define minimize(x, y) x = min((x), (y))
     34 using namespace std;
     35 typedef long long ll;
     36 const int int_inf = 0x3f3f3f3f;
     37 const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
     38 const int INT_INF = (int)((1ll << 31) - 1);
     39 const double double_inf = 1e30;
     40 const double eps = 1e-14;
     41 typedef unsigned long long ul;
     42 inline int readint(){
     43     int x;
     44     scanf("%d", &x);
     45     return x;
     46 }
     47 inline int readstr(char *s){
     48     scanf("%s", s);
     49     return strlen(s);
     50 }
     51 //Here goes 2d geometry templates
     52 struct Point{
     53     double x, y;
     54     Point(double x = 0, double y = 0) : x(x), y(y) {}
     55 };
     56 typedef Point Vector;
     57 Vector operator + (Vector A, Vector B){
     58     return Vector(A.x + B.x, A.y + B.y);
     59 }
     60 Vector operator - (Point A, Point B){
     61     return Vector(A.x - B.x, A.y - B.y);
     62 }
     63 Vector operator * (Vector A, double p){
     64     return Vector(A.x * p, A.y * p);
     65 }
     66 Vector operator / (Vector A, double p){
     67     return Vector(A.x / p, A.y / p);
     68 }
     69 bool operator < (const Point& a, const Point& b){
     70     return a.x < b.x || (a.x == b.x && a.y < b.y);
     71 }
     72 int dcmp(double x){
     73     if(abs(x) < eps) return 0;
     74     return x < 0 ? -1 : 1;
     75 }
     76 bool operator == (const Point& a, const Point& b){
     77     return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
     78 }
     79 double Dot(Vector A, Vector B){
     80     return A.x * B.x + A.y * B.y;
     81 }
     82 double Len(Vector A){
     83     return sqrt(Dot(A, A));
     84 }
     85 double Angle(Vector A, Vector B){
     86     return acos(Dot(A, B) / Len(A) / Len(B));
     87 }
     88 double Cross(Vector A, Vector B){
     89     return A.x * B.y - A.y * B.x;
     90 }
     91 double Area2(Point A, Point B, Point C){
     92     return Cross(B - A, C - A);
     93 }
     94 Vector Rotate(Vector A, double rad){
     95     //rotate counterclockwise
     96     return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
     97 }
     98 Vector Normal(Vector A){
     99     double L = Len(A);
    100     return Vector(-A.y / L, A.x / L);
    101 }
    102 void Normallize(Vector &A){
    103     double L = Len(A);
    104     A.x /= L, A.y /= L;
    105 }
    106 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
    107     Vector u = P - Q;
    108     double t = Cross(w, u) / Cross(v, w);
    109     return P + v * t;
    110 }
    111 double DistanceToLine(Point P, Point A, Point B){
    112     Vector v1 = B - A, v2 = P - A;
    113     return abs(Cross(v1, v2)) / Len(v1);
    114 }
    115 double DistanceToSegment(Point P, Point A, Point B){
    116     if(A == B) return Len(P - A);
    117     Vector v1 = B - A, v2 = P - A, v3 = P - B;
    118     if(dcmp(Dot(v1, v2)) < 0) return Len(v2);
    119     else if(dcmp(Dot(v1, v3)) > 0) return Len(v3);
    120     else return abs(Cross(v1, v2)) / Len(v1);
    121 }
    122 Point GetLineProjection(Point P, Point A, Point B){
    123     Vector v = B - A;
    124     return A + v * (Dot(v, P - A) / Dot(v, v));
    125 }
    126 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){
    127     //Line1:(a1, a2) Line2:(b1,b2)
    128     double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
    129            c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
    130     return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    131 }
    132 bool OnSegment(Point p, Point a1, Point a2){
    133     return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 -p)) < 0;
    134 }
    135 Vector GetBisector(Vector v, Vector w){
    136     Normallize(v), Normallize(w);
    137     return Vector((v.x + w.x) / 2, (v.y + w.y) / 2);
    138 }
    139 
    140 bool OnLine(Point p, Point a1, Point a2){
    141     Vector v1 = p - a1, v2 = a2 - a1;
    142     double tem = Cross(v1, v2);
    143     return dcmp(tem) == 0;
    144 }
    145 struct Line{
    146     Point p;
    147     Vector v;
    148     Point point(double t){
    149         return Point(p.x + t * v.x, p.y + t * v.y);
    150     }
    151     Line(Point p, Vector v) : p(p), v(v) {}
    152 };
    153 struct Circle{
    154     Point c;
    155     double r;
    156     Circle(Point c, double r) : c(c), r(r) {}
    157     Circle(int x, int y, int _r){
    158         c = Point(x, y);
    159         r = _r;
    160     }
    161     Point point(double a){
    162         return Point(c.x + cos(a) * r, c.y + sin(a) * r);
    163     }
    164 };
    165 int GetLineCircleIntersection(Line L, Circle C, double &t1, double& t2, vector<Point>& sol){
    166     double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
    167     double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
    168     double delta = f * f - 4 * e * g;
    169     if(dcmp(delta) < 0) return 0;
    170     if(dcmp(delta) == 0){
    171         t1 = t2 = -f / (2 * e); sol.pb(L.point(t1));
    172         return 1;
    173     }
    174     t1 = (-f - sqrt(delta)) / (2 * e); sol.pb(L.point(t1));
    175     t2 = (-f + sqrt(delta)) / (2 * e); sol.pb(L.point(t2));
    176     return 2;
    177 }
    178 double angle(Vector v){
    179     return atan2(v.y, v.x);
    180     //(-pi, pi]
    181 }
    182 int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){
    183     double d = Len(C1.c - C2.c);
    184     if(dcmp(d) == 0){
    185         if(dcmp(C1.r - C2.r) == 0) return -1; //two circle duplicates
    186         return 0; //two circles share identical center
    187     }
    188     if(dcmp(C1.r + C2.r - d) < 0) return 0; //too close
    189     if(dcmp(abs(C1.r - C2.r) - d) > 0) return 0; //too far away
    190     double a = angle(C2.c - C1.c); // angle of vector(C1, C2)
    191     double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
    192     Point p1 = C1.point(a - da), p2 = C1.point(a + da);
    193     sol.pb(p1);
    194     if(p1 == p2) return 1;
    195     sol.pb(p2);
    196     return 2;
    197 }
    198 int GetPointCircleTangents(Point p, Circle C, Vector* v){
    199     Vector u = C.c - p;
    200     double dist = Len(u);
    201     if(dist < C.r) return 0;//p is inside the circle, no tangents
    202     else if(dcmp(dist - C.r) == 0){
    203         // p is on the circles, one tangent only
    204         v[0] = Rotate(u, PI / 2);
    205         return 1;
    206     }else{
    207         double ang = asin(C.r / dist);
    208         v[0] = Rotate(u, -ang);
    209         v[1] = Rotate(u, +ang);
    210         return 2;
    211     }
    212 }
    213 int GetCircleCircleTangents(Circle A, Circle B, Point* a, Point* b){
    214     //a[i] store point of tangency on Circle A of tangent i
    215     //b[i] store point of tangency on Circle B of tangent i
    216     //six conditions is in consideration
    217     int cnt = 0;
    218     if(A.r < B.r) { swap(A, B); swap(a, b); }
    219     int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
    220     int rdiff = A.r - B.r;
    221     int rsum = A.r + B.r;
    222     if(d2 < rdiff * rdiff) return 0; // one circle is inside the other
    223     double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
    224     if(d2 == 0 && A.r == B.r) return -1; // two circle duplicates
    225     if(d2 == rdiff * rdiff){ // internal tangency
    226         a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
    227         return 1;
    228     }
    229     double ang = acos((A.r - B.r) / sqrt(d2));
    230     a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang);
    231     a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang);
    232     if(d2 == rsum * rsum){
    233         //one internal tangent
    234         a[cnt] = A.point(base);
    235         b[cnt++] = B.point(base + PI);
    236     }else if(d2 > rsum * rsum){
    237         //two internal tangents
    238         double ang = acos((A.r + B.r) / sqrt(d2));
    239         a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang + PI);
    240         a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang + PI);
    241     }
    242     return cnt;
    243 }
    244 Point ReadPoint(){
    245     double x, y;
    246     scanf("%lf%lf", &x, &y);
    247     return Point(x, y);
    248 }
    249 Circle ReadCircle(){
    250     double x, y, r;
    251     scanf("%lf%lf%lf", &x, &y, &r);
    252     return Circle(x, y, r);
    253 }
    254 //Here goes 3d geometry templates
    255 struct Point3{
    256     double x, y, z;
    257     Point3(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}
    258 };
    259 typedef Point3 Vector3;
    260 Vector3 operator + (Vector3 A, Vector3 B){
    261     return Vector3(A.x + B.x, A.y + B.y, A.z + B.z);
    262 }
    263 Vector3 operator - (Vector3 A, Vector3 B){
    264     return Vector3(A.x - B.x, A.y - B.y, A.z - B.z);
    265 }
    266 Vector3 operator * (Vector3 A, double p){
    267     return Vector3(A.x * p, A.y * p, A.z * p);
    268 }
    269 Vector3 operator / (Vector3 A, double p){
    270     return Vector3(A.x / p, A.y / p, A.z / p);
    271 }
    272 double Dot3(Vector3 A, Vector3 B){
    273     return A.x * B.x + A.y * B.y + A.z * B.z;
    274 }
    275 double Len3(Vector3 A){
    276     return sqrt(Dot3(A, A));
    277 }
    278 double Angle3(Vector3 A, Vector3 B){
    279     return acos(Dot3(A, B) / Len3(A) / Len3(B));
    280 }
    281 double DistanceToPlane(const Point3& p, const Point3 &p0, const Vector3& n){
    282     return abs(Dot3(p - p0, n));
    283 }
    284 Point3 GetPlaneProjection(const Point3 &p, const Point3 &p0, const Vector3 &n){
    285     return p - n * Dot3(p - p0, n);
    286 }
    287 Point3 GetLinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n){
    288     Vector3 v = p2 - p1;
    289     double t = (Dot3(n, p0 - p1) / Dot3(n, p2 - p1));
    290     return p1 + v * t;//if t in range [0, 1], intersection on segment
    291 }
    292 Vector3 Cross(Vector3 A, Vector3 B){
    293     return Vector3(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x);
    294 }
    295 double Area3(Point3 A, Point3 B, Point3 C){
    296     return Len3(Cross(B - A, C - A));
    297 }
    298 class cmpt{
    299 public:
    300     bool operator () (const int &x, const int &y) const{
    301         return x > y;
    302     }
    303 };
    304 
    305 int Rand(int x, int o){
    306     //if o set, return [1, x], else return [0, x - 1]
    307     if(!x) return 0;
    308     int tem = (int)((double)rand() / RAND_MAX * x) % x;
    309     return o ? tem + 1 : tem;
    310 }
    311 ////////////////////////////////////////////////////////////////////////////////////
    312 ////////////////////////////////////////////////////////////////////////////////////
    313 void data_gen(){
    314     srand(time(0));
    315     freopen("in.txt", "w", stdout);
    316     int times = 100;
    317     printf("%d
    ", times);
    318     while(times--){
    319         int r = Rand(1000, 1), a = Rand(1000, 1), c = Rand(1000, 1);
    320         int b = Rand(r, 1), d = Rand(r, 1);
    321         int m = Rand(100, 1), n = Rand(m, 1);
    322         printf("%d %d %d %d %d %d %d
    ", n, m, a, b, c, d, r);
    323     }
    324 }
    325 
    326 struct cmpx{
    327     bool operator () (int x, int y) { return x > y; }
    328 };
    329 int debug = 1;
    330 int dx[] = {0, 0, 1, 1};
    331 int dy[] = {1, 0, 0, 1};
    332 //-------------------------------------------------------------------------
    333 ll multi(ll x, ll y, ll mod){
    334     ll lhs = x * (y >> 20) % mod * (1ll << 20) % mod;
    335     ll rhs = x * (y & ((1ll << 20) - 1)) % mod;
    336     return (lhs + rhs) % mod;
    337 }
    338 
    339 ll __power(ll a, ll p, ll mod){
    340     ll ans = 1;
    341     a %= mod;
    342     while(p){
    343         if(p & 1) ans = (ans * a) % mod;
    344         p >>= 1;
    345         a = (a * a) % mod;
    346     }
    347     return ans;
    348 }
    349 
    350 ll power(ll a, ll p, ll mod){
    351     ll ans = 1;
    352     while(p){
    353         if(p & 1) ans = multi(ans, a, mod);
    354         p >>= 1;
    355         a = multi(a, a, mod);
    356     }
    357     return ans % mod;
    358 }
    359 
    360 ll n;
    361 ll ans[50000 + 10];
    362 bool ok;
    363 void dfs(int pos, ll pre, ll mod){
    364     if(pos == 12){
    365         if(pre < 1e11 || power(n, pre, mod) != pre) return;
    366         ans[n] = pre;
    367         ok = 1;
    368         return;
    369     }
    370     FOR(i, 0, 9){
    371         ll nex = mod * i + pre;
    372         //try to set next position as i
    373         ll lhs = power(n, nex, mod);
    374         ll rhs = nex % mod;
    375         if(lhs != rhs) continue;
    376         dfs(pos + 1, nex, mod * 10);
    377         if(ok) return;
    378     }
    379 }
    380 void solve(){
    381     if(ans[n] != -1) return;
    382     ok = 0;
    383     dfs(0, 0, 1);
    384 }
    385 
    386 //-------------------------------------------------------------------------
    387 int main(){
    388     //data_gen(); return 0;
    389     //C(); return 0;
    390     debug = 0;
    391     ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
    392     if(debug) freopen("in.txt", "r", stdin);
    393     //freopen("in.txt", "w", stdout);
    394     int kase = 0;
    395     clr(ans, -1);
    396     while(~scanf("%lld", &n) && n){
    397         solve();
    398         printf("Case %d: Public Key = %lld Private Key = %lld
    ", ++kase, n, ans[n]);
    399     }
    400     //////////////////////////////////////////////////////////////////////////////////////////////////////////////
    401     return 0;
    402 }
    code:
  • 相关阅读:
    Erucy的SharePoint WebPart管理工具 软件之美,美在缺陷
    乌托邦式的经理人日记——小的奖励激发员工热情 软件之美,美在缺陷
    一个项目经理的一些个人体会 转自CSDN 软件之美,美在缺陷
    人上人,肉中肉 软件之美,美在缺陷
    创建门户网站被中断了怎么办? 软件之美,美在缺陷
    高度定制的WSS网站DCC文档管理系统 软件之美,美在缺陷
    看Blog有感 软件之美,美在缺陷
    对WSS Object Model的封装类SPSHelper 软件之美,美在缺陷
    提升基于Windows SharePoint Service对象库开发的asp.net应用程序效率手记. 软件之美,美在缺陷
    1105pytorch实践
  • 原文地址:https://www.cnblogs.com/astoninfer/p/5731348.html
Copyright © 2011-2022 走看看