zoukankan      html  css  js  c++  java
  • POJ 2533, Longest Ordered Subsequence

    Time Limit: 2000MS  Memory Limit: 65536K
    Total Submissions: 12078  Accepted: 5098


    Description
    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

     

    Input
    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

     

    Output
    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

     

    Sample Input
    7
    1 7 3 5 9 4 8

     

    Sample Output
    4

    Source
    Northeastern Europe 2002, Far-Eastern Subregion


    // POJ2533.cpp : Defines the entry point for the console application.
    //

    #include 
    <iostream>
    #include 
    <algorithm>
    using namespace std;

    int main(int argc, char* argv[])
    {
        
    int N;
        scanf(
    "%d"&N);

        
    int num[1000];
        
    for (int i = 0; i < N; ++i)scanf("%d"&num[i]);

        
    int DP[1000];    
        fill(
    &DP[0], &DP[N], 1);

        
    for (int i = 1; i < N; ++i)
            
    for (int j = 0; j < i; ++j)
                
    if (num[j] < num[i]) DP[i] = max(DP[j] + 1, DP[i]);

        cout 
    << *max_element(&DP[0], &DP[N])<<endl;

        
    return 0;
    }

  • 相关阅读:
    卷积,特征图,转置卷积和空洞卷积的计算细节
    keras中的shape/input_shape
    用”人话”解释CNN —— 对单个特征图进行视觉化
    MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数
    MINST手写数字识别(二)—— 卷积神经网络(CNN)
    [LeetCode] Sqrt(x)
    [LeetCode] Text Justification
    [LeetCode] Valid Number
    [LeetCode] Minimum Path Sum
    [LeetCode] Unique Paths II
  • 原文地址:https://www.cnblogs.com/asuran/p/1582362.html
Copyright © 2011-2022 走看看