zoukankan      html  css  js  c++  java
  • POJ 2533, Longest Ordered Subsequence

    Time Limit: 2000MS  Memory Limit: 65536K
    Total Submissions: 12078  Accepted: 5098


    Description
    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

     

    Input
    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

     

    Output
    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

     

    Sample Input
    7
    1 7 3 5 9 4 8

     

    Sample Output
    4

    Source
    Northeastern Europe 2002, Far-Eastern Subregion


    // POJ2533.cpp : Defines the entry point for the console application.
    //

    #include 
    <iostream>
    #include 
    <algorithm>
    using namespace std;

    int main(int argc, char* argv[])
    {
        
    int N;
        scanf(
    "%d"&N);

        
    int num[1000];
        
    for (int i = 0; i < N; ++i)scanf("%d"&num[i]);

        
    int DP[1000];    
        fill(
    &DP[0], &DP[N], 1);

        
    for (int i = 1; i < N; ++i)
            
    for (int j = 0; j < i; ++j)
                
    if (num[j] < num[i]) DP[i] = max(DP[j] + 1, DP[i]);

        cout 
    << *max_element(&DP[0], &DP[N])<<endl;

        
    return 0;
    }

  • 相关阅读:
    记录一次电话面试
    记录一次git合并
    HTML通用属性与常见标签
    位运算的应用
    HTML总结
    前端MVC
    常用软件
    docker常用命令
    composer install(update)时出现killed
    优化小技巧:该怎么识别百度蜘蛛呢
  • 原文地址:https://www.cnblogs.com/asuran/p/1582362.html
Copyright © 2011-2022 走看看