zoukankan      html  css  js  c++  java
  • POJ 2533, Longest Ordered Subsequence

    Time Limit: 2000MS  Memory Limit: 65536K
    Total Submissions: 12078  Accepted: 5098


    Description
    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

     

    Input
    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

     

    Output
    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

     

    Sample Input
    7
    1 7 3 5 9 4 8

     

    Sample Output
    4

    Source
    Northeastern Europe 2002, Far-Eastern Subregion


    // POJ2533.cpp : Defines the entry point for the console application.
    //

    #include 
    <iostream>
    #include 
    <algorithm>
    using namespace std;

    int main(int argc, char* argv[])
    {
        
    int N;
        scanf(
    "%d"&N);

        
    int num[1000];
        
    for (int i = 0; i < N; ++i)scanf("%d"&num[i]);

        
    int DP[1000];    
        fill(
    &DP[0], &DP[N], 1);

        
    for (int i = 1; i < N; ++i)
            
    for (int j = 0; j < i; ++j)
                
    if (num[j] < num[i]) DP[i] = max(DP[j] + 1, DP[i]);

        cout 
    << *max_element(&DP[0], &DP[N])<<endl;

        
    return 0;
    }

  • 相关阅读:
    将不确定变为确定~接口应该是什么
    架构,改善程序复用性的设计~目录(附核心原代码)
    php实战第二十五天
    java一道简单的括号匹配问题
    屈原坐上神十带来了iOS 7
    《别独自用餐》 警句摘录
    php实战第二十四天
    偷了世界的程序员
    变故
    “快排”笔记
  • 原文地址:https://www.cnblogs.com/asuran/p/1582362.html
Copyright © 2011-2022 走看看