zoukankan      html  css  js  c++  java
  • Hankel Operator in Control Theory

    In control theory, there are two different, but related, definitions about Hankel Operator, depends on the system the definition for.

    For stable and minimum realization system (G = (A,B,C)), the Hankel operator is defined by

    [Gamma_G = P_+ G|_{L_2(-infty,0]} ]

    where (G|_{L_2(-infty,0]}) denotes the restriction of (G) to the subspace (L_2(-infty,0]), and (P_+) is the operator that projects a signal in (L_2(-infty,infty)) to (L_2[0,infty)) by truncation. Correspondingly, define the controllability operator (Psi_c:L_2(-infty,0] o mathbb{C}^n) by

    [Psi_c u= int_{-infty}^0 e^{-A au}Bu( au)d au ]

    and define the observability operator (Psi_o:mathbb{C}^n o L_2[0,infty)) by

    [Psi_o x_0 = Ce^{At}x_0,~~tge 0. ]

    Then it holds that

    [Gamma_G = Psi_o Psi_c ]

    An alternative definition of Hankel operator is for unstable system. That is,

    [ar{Gamma}_G = P_- G|_{L_2[0,infty)} ]

    where (P_-) is the operator that projects a signal in (L_2(-infty,infty)) to (L_2(-infty,0]) by truncation. The corresponding controllability operator (ar{Psi}_c:L_2[0,infty) o mathbb{C}^n) is defined by

    [ar{Psi}_c u= -int_{0}^{infty} e^{-A au}Bu( au)d au ]

    and observability operator (ar{Psi}_o:mathbb{C}^n o L_2(-infty,0]) is defined by

    [ar{Psi}_o x_0 = Ce^{At}x_0,~~tle 0 ]

    Then it also holds that

    [ar{Gamma}_G = ar{Psi}_o ar{Psi}_c ]

    There is a systemic interpretation for controllability and observability operators. For "stable" definition, (Psi_c) just maps the input (u in L_2(-infty,0]) supported in the past to (x(0)), and (Psi_o) maps (x(0)) to the system output (y(t),tge 0), which no input applied for (tge 0).

    While for "unstable" definition, it is not so intuitive. Note that (A) is anti-stable and

    [x(t) = e^{At}x_0 + int_{0}^{infty} e^{A(t- au)}Bu( au)d au ]

    Then (e^{-At}x(t) = x_0 + int_{0}^{infty} e^{-A au}Bu( au)d au) and letting (t o infty) obtains

    [x_0 =- int_{0}^{infty} e^{-A au}Bu( au)d au = ar{Psi}_c u ]

    This can be obtained from another point of view that consider (x(t)) as the "initial state" of the system and (x(0)=x_0) as the "final state" such that

    [x_0 = x(0) = e^{A(0-t)}x(t) + int_{t}^{0} e^{A(0- au)}Bu( au)d au ]

    For sufficiently large (t), (e^{-At}x(t)) is small enough such that (x_0 approx int_{t}^{0} e^{-A au}Bu( au)d au).

  • 相关阅读:
    npm,umi,yarn
    PHPStorm 快捷键, 到页面顶部和底部
    百度统计
    公共管理之重置密码
    ALT+J 多行编辑
    PHP,Excel导出换行
    art-template 弹出上传多图
    java mock
    mysql查找字符串出现位置
    Spring 依赖注入,在Main方法中取得Spring控制的实例
  • 原文地址:https://www.cnblogs.com/aujun/p/14003373.html
Copyright © 2011-2022 走看看