zoukankan      html  css  js  c++  java
  • Hankel Operator in Control Theory

    In control theory, there are two different, but related, definitions about Hankel Operator, depends on the system the definition for.

    For stable and minimum realization system (G = (A,B,C)), the Hankel operator is defined by

    [Gamma_G = P_+ G|_{L_2(-infty,0]} ]

    where (G|_{L_2(-infty,0]}) denotes the restriction of (G) to the subspace (L_2(-infty,0]), and (P_+) is the operator that projects a signal in (L_2(-infty,infty)) to (L_2[0,infty)) by truncation. Correspondingly, define the controllability operator (Psi_c:L_2(-infty,0] o mathbb{C}^n) by

    [Psi_c u= int_{-infty}^0 e^{-A au}Bu( au)d au ]

    and define the observability operator (Psi_o:mathbb{C}^n o L_2[0,infty)) by

    [Psi_o x_0 = Ce^{At}x_0,~~tge 0. ]

    Then it holds that

    [Gamma_G = Psi_o Psi_c ]

    An alternative definition of Hankel operator is for unstable system. That is,

    [ar{Gamma}_G = P_- G|_{L_2[0,infty)} ]

    where (P_-) is the operator that projects a signal in (L_2(-infty,infty)) to (L_2(-infty,0]) by truncation. The corresponding controllability operator (ar{Psi}_c:L_2[0,infty) o mathbb{C}^n) is defined by

    [ar{Psi}_c u= -int_{0}^{infty} e^{-A au}Bu( au)d au ]

    and observability operator (ar{Psi}_o:mathbb{C}^n o L_2(-infty,0]) is defined by

    [ar{Psi}_o x_0 = Ce^{At}x_0,~~tle 0 ]

    Then it also holds that

    [ar{Gamma}_G = ar{Psi}_o ar{Psi}_c ]

    There is a systemic interpretation for controllability and observability operators. For "stable" definition, (Psi_c) just maps the input (u in L_2(-infty,0]) supported in the past to (x(0)), and (Psi_o) maps (x(0)) to the system output (y(t),tge 0), which no input applied for (tge 0).

    While for "unstable" definition, it is not so intuitive. Note that (A) is anti-stable and

    [x(t) = e^{At}x_0 + int_{0}^{infty} e^{A(t- au)}Bu( au)d au ]

    Then (e^{-At}x(t) = x_0 + int_{0}^{infty} e^{-A au}Bu( au)d au) and letting (t o infty) obtains

    [x_0 =- int_{0}^{infty} e^{-A au}Bu( au)d au = ar{Psi}_c u ]

    This can be obtained from another point of view that consider (x(t)) as the "initial state" of the system and (x(0)=x_0) as the "final state" such that

    [x_0 = x(0) = e^{A(0-t)}x(t) + int_{t}^{0} e^{A(0- au)}Bu( au)d au ]

    For sufficiently large (t), (e^{-At}x(t)) is small enough such that (x_0 approx int_{t}^{0} e^{-A au}Bu( au)d au).

  • 相关阅读:
    PHP操作redis
    鼠标失去焦点处理办法
    关于HTTP协议,一篇就够了
    什么是 CDN(超形象)
    网站部署之~阿里云系列汇总
    阿里云系列——6.给你的域名使用CDN加速(详细步骤+简单配置)
    mysql备份与还原
    .NET框架之“小马过河”
    .NET使用Bogus生成大量随机数据
    .NET中的值类型与引用类型
  • 原文地址:https://www.cnblogs.com/aujun/p/14003373.html
Copyright © 2011-2022 走看看