zoukankan      html  css  js  c++  java
  • Hankel Operator in Control Theory

    In control theory, there are two different, but related, definitions about Hankel Operator, depends on the system the definition for.

    For stable and minimum realization system (G = (A,B,C)), the Hankel operator is defined by

    [Gamma_G = P_+ G|_{L_2(-infty,0]} ]

    where (G|_{L_2(-infty,0]}) denotes the restriction of (G) to the subspace (L_2(-infty,0]), and (P_+) is the operator that projects a signal in (L_2(-infty,infty)) to (L_2[0,infty)) by truncation. Correspondingly, define the controllability operator (Psi_c:L_2(-infty,0] o mathbb{C}^n) by

    [Psi_c u= int_{-infty}^0 e^{-A au}Bu( au)d au ]

    and define the observability operator (Psi_o:mathbb{C}^n o L_2[0,infty)) by

    [Psi_o x_0 = Ce^{At}x_0,~~tge 0. ]

    Then it holds that

    [Gamma_G = Psi_o Psi_c ]

    An alternative definition of Hankel operator is for unstable system. That is,

    [ar{Gamma}_G = P_- G|_{L_2[0,infty)} ]

    where (P_-) is the operator that projects a signal in (L_2(-infty,infty)) to (L_2(-infty,0]) by truncation. The corresponding controllability operator (ar{Psi}_c:L_2[0,infty) o mathbb{C}^n) is defined by

    [ar{Psi}_c u= -int_{0}^{infty} e^{-A au}Bu( au)d au ]

    and observability operator (ar{Psi}_o:mathbb{C}^n o L_2(-infty,0]) is defined by

    [ar{Psi}_o x_0 = Ce^{At}x_0,~~tle 0 ]

    Then it also holds that

    [ar{Gamma}_G = ar{Psi}_o ar{Psi}_c ]

    There is a systemic interpretation for controllability and observability operators. For "stable" definition, (Psi_c) just maps the input (u in L_2(-infty,0]) supported in the past to (x(0)), and (Psi_o) maps (x(0)) to the system output (y(t),tge 0), which no input applied for (tge 0).

    While for "unstable" definition, it is not so intuitive. Note that (A) is anti-stable and

    [x(t) = e^{At}x_0 + int_{0}^{infty} e^{A(t- au)}Bu( au)d au ]

    Then (e^{-At}x(t) = x_0 + int_{0}^{infty} e^{-A au}Bu( au)d au) and letting (t o infty) obtains

    [x_0 =- int_{0}^{infty} e^{-A au}Bu( au)d au = ar{Psi}_c u ]

    This can be obtained from another point of view that consider (x(t)) as the "initial state" of the system and (x(0)=x_0) as the "final state" such that

    [x_0 = x(0) = e^{A(0-t)}x(t) + int_{t}^{0} e^{A(0- au)}Bu( au)d au ]

    For sufficiently large (t), (e^{-At}x(t)) is small enough such that (x_0 approx int_{t}^{0} e^{-A au}Bu( au)d au).

  • 相关阅读:
    51Nod1355 斐波那契的最小公倍数
    Topcoder CyclesNumber 和 ARC96E Everything on It
    CF1236F Alice and the Cactus
    Projecteuler522 Hilbert's Blackout
    Projecteuler584 Birthday Problem Revisited
    CF1187F Expected Square Beauty
    BZOJ3451 Normal 和 CF235D Graph Game
    CF1153F Serval and Bonus Problem
    CTSC2006 歌唱王国
    SDOI2012 走迷宫 和 Gym100591D Fox Rocks
  • 原文地址:https://www.cnblogs.com/aujun/p/14003373.html
Copyright © 2011-2022 走看看