zoukankan      html  css  js  c++  java
  • RadonNikodym定理“推广”(Ex 2.12.2) Jun

    Foundations of Modern Analysis, Avner Friedman)Problem 2.12.2. The Radon-Nikodym theorem remains ture in case $\mu $ is a $\sigma$-finite signed measure.

    Radon-Nikodym theorem is about saying that $\left( {X,a,\mu } \right)$ is a $\sigma$-finite measure, $\mu$ is a measure, $\nu $ is a signed measure and $\nu  \ll \mu $. Then there exists a measurable function $f$ such that $\nu \left( E \right) = \int_E {fd\mu } $. Problem 2.12.2 extended the condition “$\mu$ is a measure” to that “$\mu$ is a signed measure”.

    My idea is that, consider the Jordan decomposition ${\mu ^ + }$ and ${\mu ^ - }$ (where $\mu  = {\mu ^ + } - {\mu ^ - }$) over the Hahn decomposition ($A,B$) of $X$. Thus ${\mu ^ + }$ and ${\mu ^ - }$ are both measures, we then can apply Radon-Nikodym theorem. Consider the positive set A, easily, we get $\nu  \ll {\mu ^ + }$, hence there exists a measurable function ${f_1}$ such that \[v\left( E \right) = \int_E {{f_1}d{\mu ^ + }} ,\forall E \subseteq A\]

    Similarily, there exists a measurable function ${f_2}$ on B such that $-v\left( E \right) = \int_E {{f_2}d{\mu ^ - }} ,\forall E \subseteq B$. (I am not sure if it's true)

    Then for all $E \in a$, \[\begin{array}{l}
    \nu \left( E \right) = \nu \left( {E \cap A} \right) + \nu \left( {E \cap B} \right)\\
     = \int_{E \cap A} {{f_1}d{\mu ^ + }}  - \int_{E \cap B} {{f_2}d{\mu ^ - }} \\
     = \int_E {{\chi _A}{f_1}d{\mu ^ + }}  - \int_E {{\chi _B}{f_2}d{\mu ^ - }} \\
    \mathop  = \limits^{{\rm{(a)}}} \int_E {\left( {{\chi _A}{f_1} + {\chi _B}{f_2}} \right)d{\mu ^ + }}  - \int_E {\left( {{\chi _A}{f_1} + {\chi _B}{f_2}} \right)d{\mu ^ - }} \\
    \mathop  = \limits^{{\rm{(b)}}} \int_E {\left( {{\chi _A}{f_1} + {\chi _B}{f_2}} \right)d\mu } \\
     \buildrel \Delta \over = \int_E {fd\mu }
    \end{array}\]

    where equality (a) is because ${\mu ^ + }$(${\mu ^ - }$) to $B$($A$) is 0; equality (b) is by definition that $\int_E {fd\mu }  = \int_E {fd{\mu ^ + }}  - \int_E {fd{\mu ^ - }} $.

  • 相关阅读:
    分西瓜(dfs)
    括号配对(栈)
    gcd表(欧几里得定理)
    整数性质(拓展欧几里得算法)
    欧几里得算法(求最大公约数)拓展欧几里得算法
    删除元素(二分查找)
    括号配对问题
    公司组织看电影(综合)
    取余数(%)
    幼儿园分苹果(/)
  • 原文地址:https://www.cnblogs.com/aujun/p/3806962.html
Copyright © 2011-2022 走看看