本次主要说说用不同语言来实现墨卡托的正算和反算,即经纬度和平面坐标的相互转换。
由于编写仓促,文中有不明白的地方,过几天我会依次增加注释。
正球墨卡托
JavaScript
function y2lat(a) { return 180/Math.PI * (2 * Math.atan(Math.exp(a*Math.PI/180)) - Math.PI/2); } function lat2y(a) { return 180/Math.PI * Math.log(Math.tan(Math.PI/4+a*(Math.PI/180)/2)); }
C
#include <math.h> #define deg2rad(d) ((d*M_PI)/180) #define rad2deg(d) ((d*180)/M_PI) #define earth_radius 6378137 /* The following functions take or return there results in degrees */ double y2lat_d(double y) { return rad2deg(2 * atan(exp( deg2rad(y) ) ) - M_PI/2); } double x2lon_d(double x) { return x; } double lat2y_d(double lat) { return rad2deg(log(tan(M_PI/4+ deg2rad(lat)/2))); } double lon2x_d(double lon) { return lon; } /* The following functions take or return there results in something close to meters, along the equator */ double y2lat_m(double y) { return rad2deg(2 * atan(exp( (y / earth_radius ) ) - M_PI/2)); } double x2lon_m(double x) { return rad2deg(x / earth_radius); } double lat2y_m(double lat) { return earth_radius * log(tan(M_PI/4+ deg2rad(lat)/2)); } double lon2x_m(double lon) { return deg2rad(lon) * earth_radius; }
PostGIS / SQL
INSERT INTO spatial_ref_sys (srid, auth_name, auth_srid, srtext, proj4text) VALUES (900913,'EPSG',900913,'PROJCS["WGS84 / Simple Mercator",GEOGCS["WGS 84", DATUM["WGS_1984",SPHEROID["WGS_1984", 6378137.0, 298.257223563]],PRIMEM["Greenwich", 0.0], UNIT["degree", 0.017453292519943295],AXIS["Longitude", EAST],AXIS["Latitude", NORTH]], PROJECTION["Mercator_1SP_Google"],PARAMETER["latitude_of_origin", 0.0], PARAMETER["central_meridian", 0.0],PARAMETER["scale_factor", 1.0],PARAMETER["false_easting", 0.0], PARAMETER["false_northing", 0.0],UNIT["m", 1.0],AXIS["x", EAST], AXIS["y", NORTH],AUTHORITY["EPSG","900913"]]', '+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs');
Java
import java.lang.Math; public class SphericalMercator { public static double y2lat(double aY) { return Math.toDegrees(2* Math.atan(Math.exp(Math.toRadians(aY))) - Math.PI/2); } public static double lat2y(double aLat) { return Math.toDegrees(Math.log(Math.tan(Math.PI/4+Math.toRadians(aLat)/2))); } }
PHP
function lon2x($lon) { return deg2rad($lon) * 6378137.0; } function lat2y($lat) { return log(tan(M_PI_4 + deg2rad($lat) / 2.0)) * 6378137.0; } function x2lon($x) { return rad2deg($x / 6378137.0); } function y2lat($y) { return rad2deg(2.0 * atan(exp($y / 6378137.0)) - M_PI_2); }
Python
import math def y2lat(a): return 180.0/math.pi*(2.0*math.atan(math.exp(a*math.pi/180.0))-math.pi/2.0) def lat2y(a): return 180.0/math.pi*math.log(math.tan(math.pi/4.0+a*(math.pi/180.0)/2.0))
C#
public double YToLatitude(double y) { return 180.0/System.Math.PI * (2 * System.Math.Atan( System.Math.Exp(y*System.Math.PI/180)) - System.Math.PI/2); } public double LatitudeToY (double latitude) { return 180.0/System.Math.PI * System.Math.Log( System.Math.Tan( System.Math.PI/4.0+latitude*(System.Math.PI/180.0)/2)); }
椭球墨卡托
JavaScript
function deg_rad(ang) { return ang * (Math.PI/180.0) } function merc_x(lon) { var r_major = 6378137.000; return r_major * deg_rad(lon); } function merc_y(lat) { if (lat > 89.5) lat = 89.5; if (lat < -89.5) lat = -89.5; var r_major = 6378137.000; var r_minor = 6356752.3142; var temp = r_minor / r_major; var es = 1.0 - (temp * temp); var eccent = Math.sqrt(es); var phi = deg_rad(lat); var sinphi = Math.sin(phi); var con = eccent * sinphi; var com = .5 * eccent; con = Math.pow((1.0-con)/(1.0+con), com); var ts = Math.tan(.5 * (Math.PI*0.5 - phi))/con; var y = 0 - r_major * Math.log(ts); return y; } function merc(x,y) { return [merc_x(x),merc_y(y)]; }
var Conv=({ r_major:6378137.0,//Equatorial Radius, WGS84 r_minor:6356752.314245179,//defined as constant f:298.257223563,//1/f=(a-b)/a , a=r_major, b=r_minor deg2rad:function(d) { var r=d*(Math.PI/180.0); return r; }, rad2deg:function(r) { var d=r/(Math.PI/180.0); return d; }, ll2m:function(lon,lat) //lat lon to mercator { //lat, lon in rad var x=this.r_major * this.deg2rad(lon); if (lat > 89.5) lat = 89.5; if (lat < -89.5) lat = -89.5; var temp = this.r_minor / this.r_major; var es = 1.0 - (temp * temp); var eccent = Math.sqrt(es); var phi = this.deg2rad(lat); var sinphi = Math.sin(phi); var con = eccent * sinphi; var com = .5 * eccent; var con2 = Math.pow((1.0-con)/(1.0+con), com); var ts = Math.tan(.5 * (Math.PI*0.5 - phi))/con2; var y = 0 - this.r_major * Math.log(ts); var ret={'x':x,'y':y}; return ret; }, m2ll:function(x,y) //mercator to lat lon { var lon=this.rad2deg((x/this.r_major)); var temp = this.r_minor / this.r_major; var e = Math.sqrt(1.0 - (temp * temp)); var lat=this.rad2deg(this.pj_phi2( Math.exp( 0-(y/this.r_major)), e)); var ret={'lon':lon,'lat':lat}; return ret; }, pj_phi2:function(ts, e) { var N_ITER=15; var HALFPI=Math.PI/2; var TOL=0.0000000001; var eccnth, Phi, con, dphi; var i; var eccnth = .5 * e; Phi = HALFPI - 2. * Math.atan (ts); i = N_ITER; do { con = e * Math.sin (Phi); dphi = HALFPI - 2. * Math.atan (ts * Math.pow((1. - con) / (1. + con), eccnth)) - Phi; Phi += dphi; } while ( Math.abs(dphi)>TOL && --i); return Phi; } }); //usage var mercator=Conv.ll2m(47.6035525, 9.770602);//output mercator.x, mercator.y var latlon=Conv.m2ll(5299424.36041, 1085840.05328);//output latlon.lat, latlon.lon
C
#include <math.h> /* * Mercator transformation * accounts for the fact that the earth is not a sphere, but a spheroid */ #define D_R (M_PI / 180.0) #define R_D (180.0 / M_PI) #define R_MAJOR 6378137.0 #define R_MINOR 6356752.3142 #define RATIO (R_MINOR/R_MAJOR) #define ECCENT (sqrt(1.0 - (RATIO * RATIO))) #define COM (0.5 * ECCENT) static double deg_rad (double ang) { return ang * D_R; } double merc_x (double lon) { return R_MAJOR * deg_rad (lon); } double merc_y (double lat) { lat = fmin (89.5, fmax (lat, -89.5)); double phi = deg_rad(lat); double sinphi = sin(phi); double con = ECCENT * sinphi; con = pow((1.0 - con) / (1.0 + con), COM); double ts = tan(0.5 * (M_PI * 0.5 - phi)) / con; return 0 - R_MAJOR * log(ts); } static double rad_deg (double ang) { return ang * R_D; } double merc_lon (double x) { return rad_deg(x) / R_MAJOR; } double merc_lat (double y) { double ts = exp ( -y / R_MAJOR); double phi = M_PI_2 - 2 * atan(ts); double dphi = 1.0; int i; for (i = 0; fabs(dphi) > 0.000000001 && i < 15; i++) { double con = ECCENT * sin (phi); dphi = M_PI_2 - 2 * atan (ts * pow((1.0 - con) / (1.0 + con), COM)) - phi; phi += dphi; } return rad_deg (phi); }
// Add this line before including math.h: #define _USE_MATH_DEFINES // Additions for MS Windows compilation: #ifndef M_PI #define M_PI acos(-1.0) #endif #ifndef M_PI_2 #define M_PI_2 1.57079632679489661922 #endif inline double fmin(double x, double y) { return(x < y ? x : y); } inline double fmax(double x, double y) { return(x > y ? x : y); }
C#
using System; public static class MercatorProjection { private static readonly double R_MAJOR = 6378137.0; private static readonly double R_MINOR = 6356752.3142; private static readonly double RATIO = R_MINOR / R_MAJOR; private static readonly double ECCENT = Math.Sqrt(1.0 - (RATIO * RATIO)); private static readonly double COM = 0.5 * ECCENT; private static readonly double DEG2RAD = Math.PI / 180.0; private static readonly double RAD2Deg = 180.0 / Math.PI; private static readonly double PI_2 = Math.PI / 2.0; public static double[] toPixel(double lon, double lat) { return new double[] { lonToX(lon), latToY(lat) }; } public static double[] toGeoCoord(double x, double y) { return new double[] { xToLon(x), yToLat(y) }; } public static double lonToX(double lon) { return R_MAJOR * DegToRad(lon); } public static double latToY(double lat) { lat = Math.Min(89.5, Math.Max(lat, -89.5)); double phi = DegToRad(lat); double sinphi = Math.Sin(phi); double con = ECCENT * sinphi; con = Math.Pow(((1.0 - con) / (1.0 + con)), COM); double ts = Math.Tan(0.5 * ((Math.PI * 0.5) - phi)) / con; return 0 - R_MAJOR * Math.Log(ts); } public static double xToLon(double x) { return RadToDeg(x) / R_MAJOR; } public static double yToLat(double y) { double ts = Math.Exp(-y / R_MAJOR); double phi = PI_2 - 2 * Math.Atan(ts); double dphi = 1.0; int i = 0; while ((Math.Abs(dphi) > 0.000000001) && (i < 15)) { double con = ECCENT * Math.Sin(phi); dphi = PI_2 - 2 * Math.Atan(ts * Math.Pow((1.0 - con) / (1.0 + con), COM)) - phi; phi += dphi; i++; } return RadToDeg(phi); } private static double RadToDeg(double rad) { return rad * RAD2Deg; } private static double DegToRad(double deg) { return deg * DEG2RAD; } }
PHP
function merc_x($lon) { $r_major = 6378137.000; return $r_major * deg2rad($lon); } function merc_y($lat) { if ($lat > 89.5) $lat = 89.5; if ($lat < -89.5) $lat = -89.5; $r_major = 6378137.000; $r_minor = 6356752.3142; $temp = $r_minor / $r_major; $es = 1.0 - ($temp * $temp); $eccent = sqrt($es); $phi = deg2rad($lat); $sinphi = sin($phi); $con = $eccent * $sinphi; $com = 0.5 * $eccent; $con = pow((1.0-$con)/(1.0+$con), $com); $ts = tan(0.5 * ((M_PI*0.5) - $phi))/$con; $y = - $r_major * log($ts); return $y; } function merc($x,$y) { return array('x'=>merc_x($x),'y'=>merc_y($y)); } $array = merc(122,11); Java Implementation Java Implementation by Moshe Sayag, based on the JavaScript code published above, 17:11, 15.1.2008 public class Mercator { final private static double R_MAJOR = 6378137.0; final private static double R_MINOR = 6356752.3142; public double[] merc(double x, double y) { return new double[] {mercX(x), mercY(y)}; } private double mercX(double lon) { return R_MAJOR * Math.toRadians(lon); } private double mercY(double lat) { if (lat > 89.5) { lat = 89.5; } if (lat < -89.5) { lat = -89.5; } double temp = R_MINOR / R_MAJOR; double es = 1.0 - (temp * temp); double eccent = Math.sqrt(es); double phi = Math.toRadians(lat); double sinphi = Math.sin(phi); double con = eccent * sinphi; double com = 0.5 * eccent; con = Math.pow(((1.0-con)/(1.0+con)), com); double ts = Math.tan(0.5 * ((Math.PI*0.5) - phi))/con; double y = 0 - R_MAJOR * Math.log(ts); return y; } }
Python
import math def merc_x(lon): r_major=6378137.000 return r_major*math.radians(lon) def merc_y(lat): if lat>89.5:lat=89.5 if lat<-89.5:lat=-89.5 r_major=6378137.000 r_minor=6356752.3142 temp=r_minor/r_major eccent=math.sqrt(1-temp**2) phi=math.radians(lat) sinphi=math.sin(phi) con=eccent*sinphi com=eccent/2 con=((1.0-con)/(1.0+con))**com ts=math.tan((math.pi/2-phi)/2)/con y=0-r_major*math.log(ts) return y
Java
public class Mercator { final private static double R_MAJOR = 6378137.0; final private static double R_MINOR = 6356752.3142; public double[] merc(double x, double y) { return new double[] {mercX(x), mercY(y)}; } private double mercX(double lon) { return R_MAJOR * Math.toRadians(lon); } private double mercY(double lat) { if (lat > 89.5) { lat = 89.5; } if (lat < -89.5) { lat = -89.5; } double temp = R_MINOR / R_MAJOR; double es = 1.0 - (temp * temp); double eccent = Math.sqrt(es); double phi = Math.toRadians(lat); double sinphi = Math.sin(phi); double con = eccent * sinphi; double com = 0.5 * eccent; con = Math.pow(((1.0-con)/(1.0+con)), com); double ts = Math.tan(0.5 * ((Math.PI*0.5) - phi))/con; double y = 0 - R_MAJOR * Math.log(ts); return y; } }