zoukankan      html  css  js  c++  java
  • 【地图投影】墨卡托投影(三)

    本次主要说说用不同语言来实现墨卡托的正算和反算,即经纬度和平面坐标的相互转换。

    由于编写仓促,文中有不明白的地方,过几天我会依次增加注释。

    正球墨卡托

       JavaScript

    function y2lat(a) { return 180/Math.PI * (2 * Math.atan(Math.exp(a*Math.PI/180)) - Math.PI/2); }
    function lat2y(a) { return 180/Math.PI * Math.log(Math.tan(Math.PI/4+a*(Math.PI/180)/2)); }


    C

    #include <math.h>
    #define deg2rad(d) ((d*M_PI)/180)
    #define rad2deg(d) ((d*180)/M_PI)
    #define earth_radius 6378137
     
    /* The following functions take or return there results in degrees */
     
    double y2lat_d(double y) { return rad2deg(2 * atan(exp(  deg2rad(y) ) ) - M_PI/2); }
    double x2lon_d(double x) { return x; }
    double lat2y_d(double lat) { return rad2deg(log(tan(M_PI/4+ deg2rad(lat)/2))); }
    double lon2x_d(double lon) { return lon; }
     
    /* The following functions take or return there results in something close to meters, along the equator */
     
    double y2lat_m(double y) { return rad2deg(2 * atan(exp( (y / earth_radius ) ) - M_PI/2)); }
    double x2lon_m(double x) { return rad2deg(x / earth_radius); }
    double lat2y_m(double lat) { return earth_radius * log(tan(M_PI/4+ deg2rad(lat)/2)); }
    double lon2x_m(double lon) { return deg2rad(lon) * earth_radius; }


    PostGIS / SQL

    INSERT INTO spatial_ref_sys (srid, auth_name, auth_srid, srtext, proj4text) VALUES 
     (900913,'EPSG',900913,'PROJCS["WGS84 / Simple Mercator",GEOGCS["WGS 84",
     DATUM["WGS_1984",SPHEROID["WGS_1984", 6378137.0, 298.257223563]],PRIMEM["Greenwich", 0.0],
     UNIT["degree", 0.017453292519943295],AXIS["Longitude", EAST],AXIS["Latitude", NORTH]],
     PROJECTION["Mercator_1SP_Google"],PARAMETER["latitude_of_origin", 0.0],
     PARAMETER["central_meridian", 0.0],PARAMETER["scale_factor", 1.0],PARAMETER["false_easting", 0.0],
     PARAMETER["false_northing", 0.0],UNIT["m", 1.0],AXIS["x", EAST],
     AXIS["y", NORTH],AUTHORITY["EPSG","900913"]]',
     '+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs');


    Java

    import java.lang.Math;
     
    public class SphericalMercator {
      public static double y2lat(double aY) {
        return Math.toDegrees(2* Math.atan(Math.exp(Math.toRadians(aY))) - Math.PI/2);
      }
     
      public static double lat2y(double aLat) {
        return Math.toDegrees(Math.log(Math.tan(Math.PI/4+Math.toRadians(aLat)/2)));
      }
    }


    PHP

    function lon2x($lon) { return deg2rad($lon) * 6378137.0; }
    function lat2y($lat) { return log(tan(M_PI_4 + deg2rad($lat) / 2.0)) * 6378137.0; }
    function x2lon($x) { return rad2deg($x / 6378137.0); }
    function y2lat($y) { return rad2deg(2.0 * atan(exp($y / 6378137.0)) - M_PI_2); }


    Python

    import math
    def y2lat(a):
      return 180.0/math.pi*(2.0*math.atan(math.exp(a*math.pi/180.0))-math.pi/2.0)
    def lat2y(a):
      return 180.0/math.pi*math.log(math.tan(math.pi/4.0+a*(math.pi/180.0)/2.0))


    C#

    public double YToLatitude(double y)
    		{
    			return 180.0/System.Math.PI * 
    				(2 * 
    				 System.Math.Atan(
    					System.Math.Exp(y*System.Math.PI/180)) - System.Math.PI/2);
    		}
    		public double LatitudeToY (double latitude)
    		{
    			return 180.0/System.Math.PI * 
    				System.Math.Log(
    					System.Math.Tan(
    						System.Math.PI/4.0+latitude*(System.Math.PI/180.0)/2));
    		}


    椭球墨卡托

    JavaScript

    function deg_rad(ang) {
        return ang * (Math.PI/180.0)
    }
    function merc_x(lon) {
        var r_major = 6378137.000;
        return r_major * deg_rad(lon);
    }
    function merc_y(lat) {
        if (lat > 89.5)
            lat = 89.5;
        if (lat < -89.5)
            lat = -89.5;
        var r_major = 6378137.000;
        var r_minor = 6356752.3142;
        var temp = r_minor / r_major;
        var es = 1.0 - (temp * temp);
        var eccent = Math.sqrt(es);
        var phi = deg_rad(lat);
        var sinphi = Math.sin(phi);
        var con = eccent * sinphi;
        var com = .5 * eccent;
        con = Math.pow((1.0-con)/(1.0+con), com);
        var ts = Math.tan(.5 * (Math.PI*0.5 - phi))/con;
        var y = 0 - r_major * Math.log(ts);
        return y;
    }
    function merc(x,y) {
        return [merc_x(x),merc_y(y)];
    }


     

    var Conv=({
    	r_major:6378137.0,//Equatorial Radius, WGS84
    	r_minor:6356752.314245179,//defined as constant
    	f:298.257223563,//1/f=(a-b)/a , a=r_major, b=r_minor
    	deg2rad:function(d)
    	{
    		var r=d*(Math.PI/180.0);
    		return r;
    	},
    	rad2deg:function(r)
    	{
    		var d=r/(Math.PI/180.0);
    		return d;
    	},
    	ll2m:function(lon,lat) //lat lon to mercator
    	{
    		//lat, lon in rad
    		var x=this.r_major * this.deg2rad(lon);
     
    		if (lat > 89.5) lat = 89.5;
    		if (lat < -89.5) lat = -89.5;
     
     
    		var temp = this.r_minor / this.r_major;
    		var es = 1.0 - (temp * temp);
    		var eccent = Math.sqrt(es);
     
    		var phi = this.deg2rad(lat);
     
    		var sinphi = Math.sin(phi);
     
    		var con = eccent * sinphi;
    		var com = .5 * eccent;
    		var con2 = Math.pow((1.0-con)/(1.0+con), com);
    		var ts = Math.tan(.5 * (Math.PI*0.5 - phi))/con2;
    		var y = 0 - this.r_major * Math.log(ts);
    		var ret={'x':x,'y':y};
    		return ret;
    	},
    	m2ll:function(x,y) //mercator to lat lon
    	{
    		var lon=this.rad2deg((x/this.r_major));
     
    		var temp = this.r_minor / this.r_major;
    		var e = Math.sqrt(1.0 - (temp * temp));
    		var lat=this.rad2deg(this.pj_phi2( Math.exp( 0-(y/this.r_major)), e));
     
    		var ret={'lon':lon,'lat':lat};
    		return ret;
    	},
    	pj_phi2:function(ts, e) 
    	{
    		var N_ITER=15;
    		var HALFPI=Math.PI/2;
     
     
    		var TOL=0.0000000001;
    		var eccnth, Phi, con, dphi;
    		var i;
    		var eccnth = .5 * e;
    		Phi = HALFPI - 2. * Math.atan (ts);
    		i = N_ITER;
    		do 
    		{
    			con = e * Math.sin (Phi);
    			dphi = HALFPI - 2. * Math.atan (ts * Math.pow((1. - con) / (1. + con), eccnth)) - Phi;
    			Phi += dphi;
     
    		} 
    		while ( Math.abs(dphi)>TOL && --i);
    		return Phi;
    	}
    });
    //usage
    var mercator=Conv.ll2m(47.6035525, 9.770602);//output mercator.x, mercator.y
    var latlon=Conv.m2ll(5299424.36041, 1085840.05328);//output latlon.lat, latlon.lon


    C

    #include <math.h>
     
    /*
     * Mercator transformation
     * accounts for the fact that the earth is not a sphere, but a spheroid
     */
    #define D_R (M_PI / 180.0)
    #define R_D (180.0 / M_PI)
    #define R_MAJOR 6378137.0
    #define R_MINOR 6356752.3142
    #define RATIO (R_MINOR/R_MAJOR)
    #define ECCENT (sqrt(1.0 - (RATIO * RATIO)))
    #define COM (0.5 * ECCENT)
     
    static double deg_rad (double ang) {
            return ang * D_R;
    }
     
    double merc_x (double lon) {
            return R_MAJOR * deg_rad (lon);
    }
     
    double merc_y (double lat) {
            lat = fmin (89.5, fmax (lat, -89.5));
            double phi = deg_rad(lat);
            double sinphi = sin(phi);
            double con = ECCENT * sinphi;
            con = pow((1.0 - con) / (1.0 + con), COM);
            double ts = tan(0.5 * (M_PI * 0.5 - phi)) / con;
            return 0 - R_MAJOR * log(ts);
    }
     
    static double rad_deg (double ang) {
            return ang * R_D;
    }
     
    double merc_lon (double x) {
            return rad_deg(x) / R_MAJOR;
    }
     
    double merc_lat (double y) {
            double ts = exp ( -y / R_MAJOR);
            double phi = M_PI_2 - 2 * atan(ts);
            double dphi = 1.0;
            int i;
            for (i = 0; fabs(dphi) > 0.000000001 && i < 15; i++) {
                    double con = ECCENT * sin (phi);
                    dphi = M_PI_2 - 2 * atan (ts * pow((1.0 - con) / (1.0 + con), COM)) - phi;
                    phi += dphi;
            }
            return rad_deg (phi);
    }
    // Add this line before including math.h:
    #define _USE_MATH_DEFINES
    // Additions for MS Windows compilation:
    #ifndef M_PI
    	#define M_PI acos(-1.0)
    #endif
    #ifndef M_PI_2
    	#define M_PI_2 1.57079632679489661922
    #endif
    inline double fmin(double x, double y) { return(x < y ? x : y); }
    inline double fmax(double x, double y) { return(x > y ? x : y); }


    C#

    using System;
     
    public static class MercatorProjection
    {
        private static readonly double R_MAJOR = 6378137.0;
        private static readonly double R_MINOR = 6356752.3142;
        private static readonly double RATIO = R_MINOR / R_MAJOR;
        private static readonly double ECCENT = Math.Sqrt(1.0 - (RATIO * RATIO));
        private static readonly double COM = 0.5 * ECCENT;
     
        private static readonly double DEG2RAD = Math.PI / 180.0;
        private static readonly double RAD2Deg = 180.0 / Math.PI;
        private static readonly double PI_2 = Math.PI / 2.0;
     
        public static double[] toPixel(double lon, double lat)
        {
            return new double[] { lonToX(lon), latToY(lat) };
        }
     
        public static double[] toGeoCoord(double x, double y)
        {
            return new double[] { xToLon(x), yToLat(y) };
        }
     
        public static double lonToX(double lon)
        {
            return R_MAJOR * DegToRad(lon);
        }
     
        public static double latToY(double lat)
        {
            lat = Math.Min(89.5, Math.Max(lat, -89.5));
            double phi = DegToRad(lat);
            double sinphi = Math.Sin(phi);
            double con = ECCENT * sinphi;
            con = Math.Pow(((1.0 - con) / (1.0 + con)), COM);
            double ts = Math.Tan(0.5 * ((Math.PI * 0.5) - phi)) / con;
            return 0 - R_MAJOR * Math.Log(ts);
        }
     
        public static double xToLon(double x)
        {
            return RadToDeg(x) / R_MAJOR;
        }
     
        public static double yToLat(double y)
        {
            double ts = Math.Exp(-y / R_MAJOR);
            double phi = PI_2 - 2 * Math.Atan(ts);
            double dphi = 1.0;
            int i = 0;
            while ((Math.Abs(dphi) > 0.000000001) && (i < 15))
            {
                double con = ECCENT * Math.Sin(phi);
                dphi = PI_2 - 2 * Math.Atan(ts * Math.Pow((1.0 - con) / (1.0 + con), COM)) - phi;
                phi += dphi;
                i++;
            }
            return RadToDeg(phi);
        }
     
        private static double RadToDeg(double rad)
        {
            return rad * RAD2Deg;
        }
     
        private static double DegToRad(double deg)
        {
            return deg * DEG2RAD;
        }
    }


    PHP

    function merc_x($lon)
    {
    	$r_major = 6378137.000;
    	return $r_major * deg2rad($lon);
    }
     
    function merc_y($lat)
    {
    	if ($lat > 89.5) $lat = 89.5;
    	if ($lat < -89.5) $lat = -89.5;
    	$r_major = 6378137.000;
        $r_minor = 6356752.3142;
        $temp = $r_minor / $r_major;
    	$es = 1.0 - ($temp * $temp);
        $eccent = sqrt($es);
        $phi = deg2rad($lat);
        $sinphi = sin($phi);
        $con = $eccent * $sinphi;
        $com = 0.5 * $eccent;
    	$con = pow((1.0-$con)/(1.0+$con), $com);
    	$ts = tan(0.5 * ((M_PI*0.5) - $phi))/$con;
        $y = - $r_major * log($ts);
        return $y;
    }
     
    function merc($x,$y) {
        return array('x'=>merc_x($x),'y'=>merc_y($y));
    }
     
    $array = merc(122,11); 
    Java Implementation 
    
    Java Implementation by Moshe Sayag, based on the JavaScript code published above, 17:11, 15.1.2008
     
    
    public class Mercator {
        final private static double R_MAJOR = 6378137.0;
        final private static double R_MINOR = 6356752.3142;
     
        public double[] merc(double x, double y) {
            return new double[] {mercX(x), mercY(y)};
        }
     
        private double  mercX(double lon) {
            return R_MAJOR * Math.toRadians(lon);
        }
     
        private double mercY(double lat) {
            if (lat > 89.5) {
                lat = 89.5;
            }
            if (lat < -89.5) {
                lat = -89.5;
            }
            double temp = R_MINOR / R_MAJOR;
            double es = 1.0 - (temp * temp);
            double eccent = Math.sqrt(es);
            double phi = Math.toRadians(lat);
            double sinphi = Math.sin(phi);
            double con = eccent * sinphi;
            double com = 0.5 * eccent;
            con = Math.pow(((1.0-con)/(1.0+con)), com);
            double ts = Math.tan(0.5 * ((Math.PI*0.5) - phi))/con;
            double y = 0 - R_MAJOR * Math.log(ts);
            return y;
        }
    }


    Python

    import math
     
    def merc_x(lon):
      r_major=6378137.000
      return r_major*math.radians(lon)
     
    def merc_y(lat):
      if lat>89.5:lat=89.5
      if lat<-89.5:lat=-89.5
      r_major=6378137.000
      r_minor=6356752.3142
      temp=r_minor/r_major
      eccent=math.sqrt(1-temp**2)
      phi=math.radians(lat)
      sinphi=math.sin(phi)
      con=eccent*sinphi
      com=eccent/2
      con=((1.0-con)/(1.0+con))**com
      ts=math.tan((math.pi/2-phi)/2)/con
      y=0-r_major*math.log(ts)
      return y


    Java

    public class Mercator {
        final private static double R_MAJOR = 6378137.0;
        final private static double R_MINOR = 6356752.3142;
     
        public double[] merc(double x, double y) {
            return new double[] {mercX(x), mercY(y)};
        }
     
        private double  mercX(double lon) {
            return R_MAJOR * Math.toRadians(lon);
        }
     
        private double mercY(double lat) {
            if (lat > 89.5) {
                lat = 89.5;
            }
            if (lat < -89.5) {
                lat = -89.5;
            }
            double temp = R_MINOR / R_MAJOR;
            double es = 1.0 - (temp * temp);
            double eccent = Math.sqrt(es);
            double phi = Math.toRadians(lat);
            double sinphi = Math.sin(phi);
            double con = eccent * sinphi;
            double com = 0.5 * eccent;
            con = Math.pow(((1.0-con)/(1.0+con)), com);
            double ts = Math.tan(0.5 * ((Math.PI*0.5) - phi))/con;
            double y = 0 - R_MAJOR * Math.log(ts);
            return y;
        }
    }

    参考资料:http://wiki.openstreetmap.org/wiki/Mercator
     

  • 相关阅读:
    自动化测试===【转】Robot Framework作者建议如何选择自动化测试框架
    python实战===一行代码就能搞定的事情!
    python实战===石头剪刀布,简单模型
    python基础===取txt文件的若干行到另一个文件
    python基础===文件对象的访问模式,以及计数循环的使用方法
    linux===linux在线模拟器汇总
    python基础===两个list合并成一个dict的方法
    python基础===map和zip的用法
    python基础===正则表达式(转)
    python基础===python内置函数大全
  • 原文地址:https://www.cnblogs.com/aukle/p/3230985.html
Copyright © 2011-2022 走看看