zoukankan      html  css  js  c++  java
  • POJ3696 The Luckiest number

    题意

    Language:
    The Luckiest number
    Time Limit: 1000MSMemory Limit: 65536K
    Total Submissions: 7083Accepted: 1886

    Description

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    Source

    分析

    [ecause L | frac{8(10^x-1)}{9} \ herefore 9L | 8(10^x-1) \ herefore frac{9L}{gcd(L,8)} | 10^x-1 \ herefore 10^x equiv 1 (mod frac{9L}{gcd(L,8)}) \ ecause a^x equiv 1 (mod n) ightarrow gcd(a,n)=1,x|varphi(n) \ herefore x|varphi(frac{9L}{gcd(L,8)}) ]

    所以枚举即可。时间复杂度(O(sqrt{L} log L))

    代码

    #include<iostream>
    #include<cmath>
    #define rg register
    #define il inline
    #define co const
    template<class T>il T read(){
    	rg T data=0,w=1;
    	rg char ch=getchar();
    	while(!isdigit(ch)){
    		if(ch=='-') w=-1;
    		ch=getchar();
    	}
    	while(isdigit(ch))
    		data=data*10+ch-'0',ch=getchar();
    	return data*w;
    }
    template<class T>il T read(rg T&x){
    	return x=read<T>();
    }
    typedef long long ll;
    
    ll L,d,k,p,s,i,num=0;
    ll gcd(ll x,ll y){
    	return y?gcd(y,x%y):x;
    }
    ll ksc(ll a,ll b,ll c){
    	ll ans=0;
    	while(b){
    		if(b&1) ans=(ans+a)%c;
    		a=a*2%c;
    		b>>=1;
    	}
    	return ans;
    }
    ll ksm(ll a,ll b,ll c){
    	ll ans=1%c;
    	a%=c;
    	while(b){
    		if(b&1) ans=ksc(ans,a,c);
    		a=ksc(a,a,c);
    		b>>=1;
    	}
    	return ans;
    }
    ll phi(ll n){
    	ll ans=n;
    	for(i=2;i*i<=n;++i)
    		if(n%i==0){
    			ans=ans/i*(i-1);
    			while(n%i==0) n/=i;
    		}
    	if(n>1) ans=ans/n*(n-1);
    	return ans;
    }
    ll number(){
    	d=gcd(L,8);
    	k=9*L/d;
    	if(gcd(k,10)!=1) return 0;
    	p=phi(k);
    	s=sqrt((double)p);
    	for(i=1;i<=s;++i)
    		if(p%i==0&&ksm(10,i,k)==1)
    			return i;
    	for(i=s-1;i;--i)
    		if(p%i==0&&ksm(10,p/i,k)==1)
    			return p/i;
    	return 0;
    }
    int main(){
    //	freopen(".in","r",stdin);
    //	freopen(".out","w",stdout);
    	while(read(L)) printf("Case %lld: %lld
    ",++num,number());
    	return 0;
    }
    
  • 相关阅读:
    「考试」省选27
    「考试」省选26
    「考试」省选25
    $dy$讲课总结
    「笔记」$Min\_25$筛
    「考试」省选24
    「总结」多项式生成函数例题(4)
    「总结」多项式生成函数相关(4)
    「考试」省选23
    「总结」后缀3
  • 原文地址:https://www.cnblogs.com/autoint/p/10440135.html
Copyright © 2011-2022 走看看