zoukankan      html  css  js  c++  java
  • CH4907 作诗

    题意

    描述

    神犇SJY虐完HEOI之后给傻×LYD出了一题:SHY是T国的公主,平时的一大爱好是作诗。由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次,每次只阅读其中连续的一段[l,r],从这一段中选出一些汉字构成诗。因为SHY喜欢对偶,所以SHY规定最后选出的每个汉字都必须在[l,r]里出现了正偶数次。而且SHY认为选出的汉字的种类数(两个一样的汉字称为同一种)越多越好(为了拿到更多的素材!)。于是SHY请LYD安排选法。LYD这种傻×当然不会了,于是向你请教……

    问题简述:N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次。

    输入格式

    输入第一行三个整数n、c以及m。表示文章字数、汉字的种类数、要选择m次。
    第二行有n个整数,每个数Ai在[1, c]间,代表一个编码为Ai的汉字。
    接下来m行每行两个整数l和r,设上一个询问的答案为ans(第一个询问时ans=0),令L=(l+ans)mod n+1, R=(r+ans)mod n+1,若L>R,交换L和R,则本次询问为[L,R]。

    输出格式

    输出共m行,每行一个整数,第i个数表示SHY第i次能选出的汉字的最多种类数。

    样例输入

    5 3 5
    1 2 2 3 1
    0 4
    1 2
    2 2
    2 3
    3 5

    样例输出

    2
    0
    0
    0
    1

    数据范围与约定

    • 对于100%的数据,1<=n,c,m<=10^5

    来源

    lydrainbowcat 原创

            </article>
    

    分析

    参照hzwer的题解。

    类似区间众数的做法,预处理F[i][j]表示第i块到第j块的答案

    一个询问l-r,那么中间大块x-y的答案已经得到了

    只要考虑l-x和y-r对答案的影响,对于这至多2√n个数,对于每个数统计它在x-y出现次数t1,以及l-r出现次数t2,根据t1,t2的奇偶性考虑其对答案的影响

    每块大小√(n/logn),复杂度n√n logn

    顺便附关于块大小分析

    设分块大小为x,分块数n/x,预处理n/x*n

    m与n同级,视为n个询问,每次询问二分x次nxlogn(除非相同的数字很多,否则logn会很小)

    n(xlogn+n/x)
    分块大小应该是sqrt(n/logn)

    代码

    STL真心慢,把fill改成memset才能AC。按道理fill应该要快一点啊。

    #include<bits/stdc++.h>
    #pragma GCC optimize("O3")
    #define rg register
    #define il inline
    #define co const
    template<class T>il T read(){
        rg T data=0,w=1;rg char ch=getchar();
        while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
        while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
        return data*w;
    }
    template<class T>il T read(rg T&x) {return x=read<T>();}
    typedef long long ll;
    using namespace std;
    
    co int N=1e5+1,T=1300;
    int n,m,a[N],tot,b[N];
    int c[N],L[N],R[N],pos[N],f[T][T];
    vector<int> e[N];
    bool v[N];
    il bool pd(int x) {return x&&~x&1;}
    il int find(int x,int l,int r){
    	return upper_bound(e[x].begin(),e[x].end(),r)-lower_bound(e[x].begin(),e[x].end(),l);
    }
    int ask(int l,int r){
    	int p=pos[l],q=pos[r],cnt=0;
    	fill(v+1,v+tot+1,0);
    	if(p==q){
    		for(int i=l;i<=r;++i){
    			if(v[a[i]]) continue;
    			v[a[i]]=1;
    			if(pd(find(a[i],l,r))) ++cnt;
    		}
    		return cnt;
    	}
    	int x=0,y=0;
    	if(p+1<=q+1) x=p+1,y=q-1;
    	cnt=f[x][y];
    	for(int i=l;i<=R[p];++i){
    		if(v[a[i]]) continue;
    		v[a[i]]=1;
    		int c1=find(a[i],l,r),c2=find(a[i],L[x],R[y]);
    		if(!pd(c1)&&pd(c2)) --cnt;
    		else if(pd(c1)&&!pd(c2)) ++cnt;
    	}
    	for(int i=L[q];i<=r;++i){
    		if(v[a[i]]) continue;
    		v[a[i]]=1;
    		int c1=find(a[i],l,r),c2=find(a[i],L[x],R[y]);
    		if(!pd(c1)&&pd(c2)) --cnt;
    		else if(pd(c1)&&!pd(c2)) ++cnt;
    	}
    	return cnt;
    }
    int main(){
    //	freopen(".in","r",stdin),freopen(".out","w",stdout);
    	read(n),read<int>(),read(m);
    	for(int i=1;i<=n;++i) read(a[i]);
    	copy(a+1,a+n+1,b);
    	sort(b+1,b+n+1);
    	tot=unique(b+1,b+n+1)-b-1;
    	for(int i=1;i<=n;++i) e[a[i]=lower_bound(b+1,b+tot+1,a[i])-b].push_back(i);
    	int t=sqrt(n*log(n)/log(2));
    	int len=t?n/t:n;
    	for(int i=1;i<=t;++i) L[i]=R[i-1]+1,R[i]=i*len;
    	if(R[t]<n) L[t+1]=R[t]+1,R[++t]=n;
    	for(int i=1;i<=t;++i)
    		for(int j=L[i];j<=R[i];++j) pos[j]=i;
    	for(int i=1;i<=t;++i){
    		fill(c+1,c+tot+1,0);
    		int cnt=0;
    		for(int j=L[i];j<=n;++j){
    			if(++c[a[j]]>1) c[a[j]]&1?--cnt:++cnt;
    			f[i][pos[j]]=cnt;
    		}
    	}
    	for(int l,r,x=0;m--;){
    		l=(read<int>()+x)%n+1,r=(read<int>()+x)%n+1;
    		if(l>r) swap(l,r);
    		printf("%d
    ",x=ask(l,r));
    	}
    	return 0;
    }
    
  • 相关阅读:
    php---观察者模式
    elasticsearch常用查询和注意点
    linux镜像iso格式
    Mysql查询今天、昨天、7天、近30天、本月、上一月数据
    php常用算法
    算法之斐波纳契数列递归和迭代实现
    带你了解session和cookie作用原理区别和用法
    mysql大数据量的分页优化
    常用链接
    自然语言处理
  • 原文地址:https://www.cnblogs.com/autoint/p/10661022.html
Copyright © 2011-2022 走看看