6801 棋盘覆盖 0x60「图论」例题
描述
给定一个N行N列的棋盘,已知某些格子禁止放置。求最多能往棋盘上放多少块的长度为2、宽度为1的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。N≤100。
输入格式
第一行为n,t(表示有t个删除的格子)
第二行到t+1行为x,y,分别表示删除格子所在的位置
x为第x行,y为第y列,行列编号从1开始。
输出格式
一个数,即最多能放的骨牌数
样例输入
8 0
样例输出
32
</article>
题解
1要素:每个格子只能被一张骨牌覆盖
0要素:行号加列号的和奇偶性相同的格子之间没有边
所以满足二分图二要素,跑二分图匹配即可。
时间复杂度(O(n^4))
co int N=100,dx[4]={0,0,1,-1},dy[4]={1,-1,0,0};
int n,m,ans,f[N*N];
bool b[N][N],v[N*N];
vector<int> e[N*N];
bool dfs(int x){
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(v[y]) continue;
v[y]=1;
if(f[y]==-1||dfs(f[y])){
f[y]=x;
return 1;
}
}
return 0;
}
int main(){
read(n),read(m);
while(m--) b[read<int>()-1][read<int>()-1]=1;
for(int i=0;i<n;++i)for(int j=0;j<n;++j)if(!b[i][j])
for(int k=0;k<4;++k){
int x=i+dx[k],y=j+dy[k];
if(0<=x&&x<n&&0<=y&&y<n&&!b[x][y])
e[i*n+j].push_back(x*n+y),e[x*n+y].push_back(i*n+j);
}
memset(f,-1,sizeof f);
for(int i=0;i<n;++i)for(int j=0;j<n;++j){
if((i^j)&1) continue;
memset(v,0,sizeof v);
ans+=dfs(i*n+j);
}
printf("%d
",ans);
return 0;
}