Consider a directed graph G of N nodes and all edges (u→v) such that u < v. It is clear that this graph doesn’t contain any cycles.
Your task is to find the lexicographically largest topological sort of the graph after removing a given list of edges.
A topological sort of a directed graph is a sequence that contains all nodes from 1 to N in some order such that each node appears in the sequence before all nodes reachable from it.
Input
The first line of input contains a single integer T, the number of test cases.
The first line of each test case contains two integers N and M (1 ≤ N ≤ 105) , the number of nodes and the number of edges to be removed, respectively.
Each of the next M lines contains two integers a and b (1 ≤ a < b ≤ N), and represents an edge that should be removed from the graph.
No edge will appear in the list more than once.
Output
For each test case, print N space-separated integers that represent the lexicographically largest topological sort of the graph after removing the given list of edges.
Example
3
3 2
1 3
2 3
4 0
4 2
1 2
1 3
3 1 2
1 2 3 4
2 3 1 4
把普通的拓扑排序的栈操作改成线段树区间减一,查询区间最右侧的0的位置即可。注意一开始就删除的边,在区间减后要单点加回来。
然后当前的点处理完后,要把其置成无穷大。具体看代码。
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define N 100010 int T,n,m,minv[N<<2],delta[N<<2]; void pushdown(int rt)//将rt结点的懒惰标记下传 { if(delta[rt]) { delta[rt<<1]+=delta[rt];//标记下传到左结点 delta[rt<<1|1]+=delta[rt];//标记下传到右结点 minv[rt<<1]+=delta[rt]; minv[rt<<1|1]+=delta[rt]; delta[rt]=0;//清除rt结点的标记,下传完成 } } void update(int ql,int qr,int v,int rt,int l,int r) { if(ql<=l&&r<=qr) { delta[rt]+=v;//更新当前结点的标记值 minv[rt]+=v; return ; } pushdown(rt);//将该节点的标记下传到孩子们 int m=(l+r>>1); if(ql<=m) update(ql,qr,v,rt<<1,l,m); if(m<qr) update(ql,qr,v,rt<<1|1,m+1,r); minv[rt]=min(minv[rt<<1],minv[rt<<1|1]); } int query(int rt,int l,int r) { if(l==r) return l; int m=(l+r>>1); pushdown(rt); if(minv[rt<<1|1]==0) return query(rt<<1|1,m+1,r); else return query(rt<<1,l,m); } int first[N],e,next[N],v[N]; void AddEdge(int U,int V) { v[++e]=V; next[e]=first[U]; first[U]=e; } int del[N]; int main() { int x,y; scanf("%d",&T); for(;T;--T) { e=0; memset(minv,0,sizeof(minv)); memset(delta,0,sizeof(delta)); memset(first,0,sizeof(first)); memset(next,0,sizeof(next)); memset(del,0,sizeof(del)); memset(v,0,sizeof(v)); scanf("%d%d",&n,&m); for(int i=1;i<=m;++i) { scanf("%d%d",&x,&y); AddEdge(x,y); ++del[y]; } for(int i=1;i<=n;++i) update(i,i,i-1-del[i],1,1,n); for(int i=1;i<=n;++i) { int U=query(1,1,n); printf("%d%c",U,i==n ? ' ' : ' '); update(U,U,n+1,1,1,n); update(U+1,n,-1,1,1,n); for(int j=first[U];j;j=next[j]) update(v[j],v[j],1,1,1,n); } } return 0; }