FFT板子。
将大整数看作多项式,它们的乘积即多项式的乘积在x=10处的取值。
#include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; #define EPS 1e-8 const double PI = acos(-1.0); struct Complex{ double real,image; Complex(double _real,double _image){ real=_real; image=_image; } Complex(){} }; Complex operator + (const Complex &c1,const Complex &c2){ return Complex(c1.real+c2.real,c1.image+c2.image); } Complex operator - (const Complex &c1,const Complex &c2){ return Complex(c1.real-c2.real,c1.image-c2.image); } Complex operator * (const Complex &c1,const Complex &c2){ return Complex(c1.real*c2.real-c1.image*c2.image,c1.real*c2.image+c1.image*c2.real); } int rev(int id,int len){ int ret=0; for(int i=0;(1<<i)<len;++i){ ret<<=1; if(id&(1<<i)){ ret|=1; } } return ret; } Complex tmp[200100]; //µ±DFT==1ʱÊÇDFT, DFT==-1ʱÔòÊÇÄæDFT void IterativeFFT(Complex A[],int len, int DFT){//¶Ô³¤¶ÈΪlen(2µÄÃÝ)µÄÊý×é½øÐÐDFT±ä»» for(int i=0;i<len;++i){ tmp[rev(i,len)]=A[i]; } for(int i=0;i<len;++i){ A[i]=tmp[i]; } for(int s=1;(1<<s)<=len;++s){ int m=(1<<s); Complex wm=Complex(cos(DFT*2*PI/m),sin(DFT*2*PI/m)); for(int k=0;k<len;k+=m){//ÕâÒ»²ã½áµã°üº¬µÄÊý×éÔªËظöÊý¶¼ÊÇ(1<<s) Complex w=Complex(1,0); for(int j=0;j<(m>>1);++j){//ÕÛ°ëÒýÀí£¬¸ù¾ÝÁ½¸ö×Ó½Úµã¼ÆË㸸½Úµã Complex t=w*A[k+j+(m>>1)]; Complex u=A[k+j]; A[k+j]=u+t; A[k+j+(m>>1)]=u-t; w=w*wm; } } } if(DFT==-1){ for(int i=0;i<len;++i){ A[i].real/=len; A[i].image/=len; } } } Complex a[200100],b[200100]; int ans[200100]; char s1[50010],s2[50010]; int main(){ // freopen("a.in","r",stdin); while(scanf("%s%s",s1,s2)!=EOF){ memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); memset(ans,0,sizeof(ans)); int len1=strlen(s1),len2=strlen(s2),len; if((len1==1 && s1[0]=='0') || (len2==1 && s2[0]=='0')){ puts("0"); continue; } for(int i=0;;++i){ if((1<<i)>=len1+len2){ len=(1<<i); break; } } for(int i=len1-1,j=0;i>=0;--i,++j){ a[j]=Complex(s1[i]-'0',0); } for(int i=len2-1,j=0;i>=0;--i,++j){ b[j]=Complex(s2[i]-'0',0); } IterativeFFT(a,len,1); IterativeFFT(b,len,1); for(int i=0;i<len;++i){ a[i]=a[i]*b[i]; } IterativeFFT(a,len,-1); for(int i=0;i<len;++i){ ans[i]=(int)(a[i].real+0.5); } for(int i=0;i<len1+len2-1;++i){ ans[i+1]+=ans[i]/10; ans[i]%=10; } for(int i=len;i>=0;--i){ if(ans[i]!=0){ for(int j=i;j>=0;--j){ printf("%d",ans[j]); } puts(""); break; } } } return 0; }