zoukankan      html  css  js  c++  java
  • 13.垃圾邮件分类2

    1.读取

    #文件读取
    file_path=r'D:PycharmProjectsuntitleddataSMSSpamCollection'
    sms=open(file_path,'r',encoding='utf-8')
    sms_data=[]
    sms_label=[]
    csv_reader=csv.reader(sms,delimiter='	')
    for line in csv_reader:
        sms_label.append(line[0])
        sms_data.append(preprocessing(line[1]))#对每封邮件做预处理
    sms.close()

    2.数据预处理

    def get_wordnet_pos(treebank_tag):  #这里生成还原参数pos
        if treebank_tag.startswith('J'):
            return nltk.corpus.wordnet.ADJ
        elif treebank_tag.startswith('V'):
            return nltk.corpus.wordnet.VERB
        elif treebank_tag.startswith('N'):
            return nltk.corpus.wordnet.NOUN
        elif treebank_tag.startswith('R'):
            return nltk.corpus.wordnet.ADV
        else:
            return nltk.corpus.wordnet.NOUN
    
    #这里进行预处理
    def preprocessing(text):
        tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]#分词
        stops = stopwords.words("english")#使用英文的停用词
        tokens = [token for token in tokens if token not in stops]#删掉停用词
        tokens = [token.lower() for token in tokens if len(token) >= 3]#将大写字母变为小写
    
        tag=nltk.pos_tag(tokens)#词性
        lmtzr = WordNetLemmatizer()
        tokens = [lmtzr.lemmatize(token,pos=get_wordnet_pos(tag[i][1])) for i,token in enumerate(tokens)]
        preprocessed_text = ''.join(tokens)
        return preprocessed_text

    3.数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(sms_data, sms_label, test_size = 0.2, stratify = sms_label)
    print(len(sms_data),len(x_train),len(x_test))

    4.文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

    4.模型选择

    from sklearn.naive_bayes import GaussianNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    5.模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义

    6.比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

    CountVectorizer会将文本中的词语转换为词频矩阵,它通过fit_transform函数计算各个词语出现的次数,通过get_feature_names()可获得所有文本的关键词,通过toarray()可看到词频矩阵的结果。

    TfidfTransformer用于统计vectorizer中每个词语的TFIDF值。将原始文档的集合转化为tf-idf特性的矩阵,相当于CountVectorizer配合TfidfTransformer使用的效果。
    即TfidfVectorizer类将CountVectorizer和TfidfTransformer类封装在一起。
  • 相关阅读:
    adfs环境安装
    joinquant网站
    test
    对C转换说明符的误解以及关于数组的一些知识
    正确求平方根的整数部分方法
    单链表的交换排序法
    链表的冒泡排序
    240页345题
    C语言中对数组名取地址
    单链表的基础操作练习
  • 原文地址:https://www.cnblogs.com/av10492/p/12943457.html
Copyright © 2011-2022 走看看