Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
The idea is the same as that of Problem N-Queens problem : dfs
public class Solution { public int totalNQueens(int n) { List<Integer> solution = new ArrayList<Integer>(); solution.add(0); if(n == 1) return 1; if(n >= 4){ List<Integer> position = new ArrayList<Integer>(); dfs(n, 0, position, solution); } return solution.get(0); } private boolean dfs(int n, int row, List<Integer> position, List<Integer> solution){ if(row == n) return true; for(int i = 0; i < n; ++i){ if(isValid(n, row * n + i, position)) { position.add(row * n + i); if(dfs(n, row + 1, position, solution)) solution.set(0, solution.get(0) + 1); position.remove(row); } } return false; } private boolean isValid(int n, int k, List<Integer> position){ for(int i = 0; i < position.size(); ++i){ if((k % n == position.get(i) % n) || Math.abs(k % n - position.get(i) % n) == (k / n - i)) return false; } return true; } }