zoukankan      html  css  js  c++  java
  • HOG+SVM(Dalal 2005)Usage

    经过千辛万苦终于把blitz和boost库编译好了,下面开始看代码喽~

        usage: svm_learn [options] example_file model_file
    Arguments:
             example_file-> file with training data
             model_file  -> file to store learned decision rule in
     
    General options:
             -?          -> this help\n
             -v [0..3]   -> verbosity level (default 1)
             -B [0,1]    -> binary input files (default 1)
    Learning options:
             -z {c,r,p}  -> select between classification (c), regression (r),
                            and preference ranking (p) (default classification)
             -c float    -> C: trade-off between training error
                            and margin (default [avg. x*x]^-1)
             -w [0..]    -> epsilon width of tube for regression
                            (default 0.1)
             -j float    -> Cost: cost-factor, by which training errors on
                            positive examples outweight errors on negative
                           examples (default 1) (see [4])
             -b [0,1]    -> use biased hyperplane (i.e. x*w+b>0) instead
                            of unbiased hyperplane (i.e. x*w>0) (default 1)
             -i [0,1]    -> remove inconsistent training examples
                            and retrain (default 0)
    Performance estimation options:
             -x [0,1]    -> compute leave-one-out estimates (default 0)
                            (see [5])
             -o ]0..2]   -> value of rho for XiAlpha-estimator and for pruning
                            leave-one-out computation (default 1.0) (see [2])
             -k [0..100] -> search depth for extended XiAlpha-estimator 
                            (default 0)
    Transduction options (see [3]):
             -p [0..1]   -> fraction of unlabeled examples to be classified
                            into the positive __class (default is the ratio of
                            positive and negative examples in the training data)
    Kernel options:
             -t int      -> type of kernel function:
                            0: linear (default)
                            1: polynomial (s a*b+c)^d
                            2: radial basis function exp(-gamma ||a-b||^2)
                            3: sigmoid tanh(s a*b + c)
                            4: user defined kernel from kernel.h
             -d int      -> parameter d in polynomial kernel
             -g float    -> parameter gamma in rbf kernel
             -s float    -> parameter s in sigmoid/poly kernel
             -r float    -> parameter c in sigmoid/poly kernel
             -u string   -> parameter of user defined kernel
    Optimization options (see [1]):
             -q [2..]    -> maximum size of QP-subproblems (default 10)
             -n [2..q]   -> number of new variables entering the working set
                            in each iteration (default n = q). Set n<q to prevent
                            zig-zagging.
             -m [5..]    -> size of cache for kernel evaluations in MB (default 40)
                            The larger the faster...
             -e float    -> eps: Allow that error for termination criterion
                            [y [w*x+b] - 1] >= eps (default 0.001)
             -y [0,1]    -> restart the optimization from alpha values in file
                            specified by -a option. (default 0)
             -h [5..]    -> number of iterations a variable needs to be
                            optimal before considered for shrinking (default 100)
             -f [0,1]    -> do final optimality check for variables removed
                            by shrinking. Although this test is usually 
                            positive, there is no guarantee that the optimum
                            was found if the test is omitted.(default 1)
             -y string   -> if option is given, reads alphas from file with given
                            and uses them as starting point. (default 'disabled')
             -# int      -> terminate optimization, if no progress after this
                            number of iterations. (default 100000)
    Output options:
             -l string   -> file to write predicted labels of unlabeled
                            examples into after transductive learning
             -a string   -> write all alphas to this file after learning
                            (in the same order as in the training set)
     
     More details in:
    [1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in
        Kernel Methods - Support Vector Learning, B. Schelkopf and C. Burges and
        A. Smola (ed.), MIT Press, 1999.
    [2] T. Joachims, Estimating the Generalization performance of an SVM
        Efficiently. International Conference on Machine Learning (ICML), 2000.
    [3] T. Joachims, Transductive Inference for Text Classification using Support
        Vector Machines. International Conference on Machine Learning (ICML),
        1999.
    [4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning
        with a knowledge-based approach - A case study in intensive care 
        monitoring. International Conference on Machine Learning (ICML), 1999.
    [5] T. Joachims, Learning to Classify Text Using Support Vector
        Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,
        2002.
     
  • 相关阅读:
    2号团队-团队任务5:项目总结会
    课后作业4:个人总结
    2号团队-团队任务4:每日立会(2018-12-7)
    2号团队-团队任务4:每日立会(2018-12-6)
    2号团队-团队任务4:每日立会(2018-12-5)
    2号团队-团队任务4:每日立会(2018-12-4)
    2号团队-团队任务4:每日立会(2018-12-3)
    2号团队-团队任务4:每日立会(2018-11-30)
    2号团队-团队任务4:每日立会(2018-11-29)
    2号团队-团队任务4:每日立会(2018-11-28)
  • 原文地址:https://www.cnblogs.com/avril/p/2728169.html
Copyright © 2011-2022 走看看