zoukankan      html  css  js  c++  java
  • N-Queens

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

    Given an integer n, return all distinct solutions to the n-queens puzzle.

    Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

    For example,
    There exist two distinct solutions to the 4-queens puzzle:

    [
     [".Q..",  // Solution 1
      "...Q",
      "Q...",
      "..Q."],
    
     ["..Q.",  // Solution 2
      "Q...",
      "...Q",
      ".Q.."]
    ]
    思路:八皇后问题一直是一个经典的回溯算法,递归算法解决。这道题受字符串的全排列的启发——定义一个数组data[n],数组中第i个数组表示位于第i行的皇后的列号。先把数组data的n个数字初始化分别用0~n-1初始化,接下来就是对数组data做全排列。我们只需要判断每一个排列对应的n个皇后是不是在同一对角线上,也就是对于数组的两个下标i和j,是不是j-i=abs(data[j]-data[i]).
    class Solution {
    public:
        bool check(vector<int> &data,int n)
        {
            for(int i=0;i<n;i++)
            {
                for(int j=i+1;j<n;j++)
                {
                    if((j-i)==abs(data[j]-data[i]))
                    {
                        return false;
                    }
                }
            }
            return true;
        }
        void Permutation(vector<vector<string> > &result,vector<int> &data,int pBegin,int n)
        {
            if(pBegin==n)
            {
                if(true==check(data,n))
                {
                    vector<string> pTemp;
                    for(int i=0;i<n;i++)
                    {
                        string row(n,'.');
                        row[data[i]]='Q';
                        pTemp.push_back(row);
                    }
                    result.push_back(pTemp);
                }
            }
            else
            {
                for(int i=pBegin;i<n;i++)
                {
                    swap(data[pBegin],data[i]);
                    Permutation(result,data,pBegin+1,n);
                    swap(data[pBegin],data[i]);
                }
            }
        }
        void Permutation(vector<vector<string> > &result,int n)
        {
            vector<int> data(n);//
            for(int i=0;i<n;i++)
                data[i]=i;
            Permutation(result,data,0,n);
        }
        vector<vector<string> > solveNQueens(int n) {
            vector<vector<string> > result;
            result.clear();
            Permutation(result,n);
            return result;
        }
    };
    
    
    
     
  • 相关阅读:
    用归并排序或树状数组求逆序对数量 poj2299
    UVA10600 次小生成树
    最小生成树求最大比率 UVALive
    求树的重心 poj 1655
    求树的直径+并查集(bfs,dfs都可以)hdu4514
    树形DP+RMQ+尺取法 hdu4123
    区间dp 51nod1021
    LCS poj1080
    最长公共子序列hdu1503
    python No handlers could be found for logger错误的解决
  • 原文地址:https://www.cnblogs.com/awy-blog/p/3644850.html
Copyright © 2011-2022 走看看