zoukankan      html  css  js  c++  java
  • 数学女孩1 笔记

     知识点如下:


    质因数分解定理。

    算术基本定理,又称为正整数的唯一分解定理,即:每个大于1的自然数均可写为质数的积,而且这些素因子按大小排列之后,写法仅有一种方式。

    因此,1不是质数。

    给定一个正整数n,求n的所有约数的和。

    首先进行质因数分解。

    将正整数 n 进行质因数分解,一般都可以写成以下形式。假设p0,p1,p2,...,pm为质数,a0,a1,a2,...,am 为正整数,则有

    n = p0a0 * p1a1 * p2a2 * ... * pmam 

    那么 n 的约数就可以表现为以下形式。

    p0b0 * p1b1 * p2b2 * ... * pmbm 

    此时,b0,b1,b2,...,bm 就是以下整数。

    b0=0,1,2,...,a0 中任意数

    b1=0,1,2,...,a1 中任意数

    ...

    bm=0,1,2,...,am 中任意数

     起初没想到,但是确实可以这样写。

    我想的是:m重循环,每个循环的循环次数是ai+1次。遍历0,1,2,...,ai

    其实是:为p0p1p2,…,pm挑一个幂,乘起来,那么就可以如上图那样写。

    括号内等比数列求和:

    (完。)

    好,上面给出了公式,先要进行质因数分解,然后代公式。

    但是实际(编程)怎么做?似乎求出所有因数,然后再求和简单?

  • 相关阅读:
    linux下区分各种SCSI磁盘类型
    Linux那些事儿之我是SCSI硬盘(3)磁盘磁盘你动起来!
    待机(STR)suspend device flow
    %pf
    ftrace misc
    reboot系统调用的时候会调用shutdown函数
    Linux进程调度
    一张图让你读懂Linux内核运行原理
    linux O1 and CFS process sched
    SQL 视图 触发器 等
  • 原文地址:https://www.cnblogs.com/azureice/p/math-girl1-note.html
Copyright © 2011-2022 走看看