zoukankan      html  css  js  c++  java
  • 元类以及属性查找

    https://zhuanlan.zhihu.com/p/109336845

    元类的介绍

    什么是元类呢?一切源自于一句话:python中一切皆为对象。让我们先定义一个类,然后逐步分析

    class StanfordTeacher(object):
        school='Stanford'
    
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
        def say(self):
            print('%s says welcome to the Stanford to learn Python' %self.name)

    所有的对象都是实例化或者说调用类而得到的(调用类的过程称为类的实例化),比如对象t1是调用类StanfordTeacher得到的

    t1=StanfordTeacher('lili',18)
    print(type(t1)) #查看对象t1的类是<class '__main__.StanfordTeacher'>

    如果一切皆为对象,那么类StanfordTeacher本质也是一个对象,既然所有的对象都是调用类得到的,那么StanfordTeacher必然也是调用了一个类得到的,这个类称为元类

    于是我们可以推导出===>产生StanfordTeacher的过程一定发生了:StanfordTeacher=元类(...)

    print(type(StanfordTeacher)) 
    # 结果为<class 'type'>,证明是调用了type这个元类而产生的StanfordTeacher,即默认的元类为type

     class关键字创建类的流程分析

    上文我们基于python中一切皆为对象的概念分析出:我们用class关键字定义的类本身也是一个对象,负责产生该对象的类称之为元类(元类可以简称为类的类),内置的元类为type

    class关键字在帮我们创建类时,必然帮我们调用了元类StanfordTeacher=type(...),那调用type时传入的参数是什么呢?必然是类的关键组成部分,一个类有三大组成部分,分别是

    1、类名class_name='StanfordTeacher'
    2、基类们class_bases=(object,)
    3、类的名称空间class_dic,类的名称空间是执行类体代码而得到的

    调用type时会依次传入以上三个参数

    综上,class关键字帮我们创建一个类应该细分为以下四个过程

     示例:不使用class关键字创建类

    # 类有三大特征:
    # 1、类名
    class_name="People"
    # 2、类的基类
    class_bases=(object,)
    # 3、执行类体代码拿到类的名称空间
    class_dic={"school":"school"}
    class_body="""
    def __init__(self,name,age):
        self.name=name
        self.age=age
    
    def print_school(self):
        print(school)
    def say(self):
        print('%s:%s' %(self.name,self.name))
    def print_school(self):
        print(self.school)
    """
    exec(class_body,{},class_dic)
    # print(class_dic)
    
    # 4、调用元类
    People=type(class_name,class_bases,class_dic)
    p1=People("egon",18)
    p1.print_school()     #school
    不使用class关键字创建类

    补充:exec的用法

    #exec:三个参数
    
    #参数一:包含一系列python代码的字符串
    
    #参数二:全局作用域(字典形式),如果不指定,默认为globals()
    
    #参数三:局部作用域(字典形式),如果不指定,默认为locals()
    
    #可以把exec命令的执行当成是一个函数的执行,会将执行期间产生的名字存放于局部名称空间中
    g={
        'x':1,
        'y':2
    }
    l={}
    
    exec('''
    global x,z
    x=100
    z=200
    
    m=300
    ''',g,l)
    
    print(g) #{'x': 100, 'y': 2,'z':200,......}
    print(l) #{'m': 300}

    自定义元类控制类StanfordTeacher的创建

    一个类没有声明自己的元类,默认他的元类就是type,除了使用内置元类type,我们也可以通过继承type来自定义元类,然后使用metaclass关键字参数为一个类指定元类

    class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类
        pass
    
    # StanfordTeacher=Mymeta('StanfordTeacher',(object),{...})
    class StanfordTeacher(object,metaclass=Mymeta): 
        school='Stanford'
    
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
        def say(self):
            print('%s says welcome to the Stanford to learn Python' %self.name)

    自定义元类可以控制类的产生过程,类的产生过程其实就是元类的调用过程,即StanfordTeacher=Mymeta('StanfordTeacher',(object),{...}),调用Mymeta会先产生一个空对象StanfordTeacher,然后连同调用Mymeta括号内的参数一同传给Mymeta下的__init__方法,完成初始化,于是我们可以

    class Mymeta(type): # 只有继承了type类的类才是元类
        #            空对象,"People",(object,),{...}
                            #类名,基类,类的名称空间
        def __init__(self,class_name,class_bases,class_dic):
            # print('run....')
            # print(self.__name__)
            # print(class_name)
            # print(class_bases,self.__bases__)
            # print(class_dic)
            super(Mymeta, self).__init__(class_name,class_bases,class_dic)
            # if not class_name.istitle():
            #     raise NameError('类名的首字母必须大写,其余小写!!!')
            if "__doc__" not in class_dic or len(class_dic["__doc__"].strip("
    ")) == 0:
                raise TypeError('类中必须有文档注释,并且文档注释不能为空')
    
    
    
    # StanfordTeacher=Mymeta("StanfordTeacher",(object,),{...})
    # 调用Mymeta发生三件事,调用Mymeta就是type.__call__
    # 1、先造一个空对象=>StanfordTeacher,调用Mymeta类内的__new__方法
    # 2、调用Mymeta这个类内的__init__方法,完成初始化对象的操作
    # 3、返回初始化好的对象
    
    class StanfordTeacher(object,metaclass=Mymeta):   #metaclass=Mymeta  设置元类
        """
            注释
            """
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
        def say(self):
            print('%s:%s' %(self.name,self.age))
    
    p1=StanfordTeacher("egon",18)
    p1.say()    #egon:18

    自定义元类控制类StanfordTeacher的调用

    储备知识:__call__

    class Foo:
        def __call__(self, *args, **kwargs):
            print(self)
            print(args)
            print(kwargs)
    
    obj=Foo()
    #1、要想让obj这个对象变成一个可调用的对象,需要在该对象的类中定义一个方法__call__方法,该方法会在调用对象时自动触发
    #2、调用obj的返回值就是__call__方法的返回值
    res=obj(1,2,3,x=1,y=2)

    由上例得知,调用一个对象,就是触发对象所在类中的__call__方法的执行,如果把StanfordTeacher也当做一个对象,那么在StanfordTeacher这个对象的类中也必然存在一个__call__方法

    class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类
        def __call__(self, *args, **kwargs):
            print(self) #<class '__main__.StanfordTeacher'>
            print(args) #('lili', 18)
            print(kwargs) #{}
            return 123
    
    class StanfordTeacher(object,metaclass=Mymeta):
        school='Stanford'
    
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
        def say(self):
            print('%s says welcome to the Stanford to learn Python' %self.name)
    
    
    
    # 调用StanfordTeacher就是在调用StanfordTeacher类中的__call__方法
    # 然后将StanfordTeacher传给self,溢出的位置参数传给*,溢出的关键字参数传给**
    # 调用StanfordTeacher的返回值就是调用__call__的返回值
    t1=StanfordTeacher('lili',18)
    print(t1) #123

    更进一步:

    class Mymeta(type): # 只有继承了type类的类才是元类
        def __call__(self, *args, **kwargs):
            # 1、Mymeta.__call__函数内会先调用People内的__new__
            people_obj=self.__new__(self)
            # 2、Mymeta.__call__函数内会调用People内的__init__
            self.__init__(people_obj,*args, **kwargs)
    
            # print('people对象的属性:',people_obj.__dict__)
            people_obj.__dict__['xxxxx']=11111
            # 3、Mymeta.__call__函数内会返回一个初始化好的对象
            return people_obj
    
    # 类的产生
    # People=Mymeta()=》type.__call__=>干了3件事
    # 1、type.__call__函数内会先调用Mymeta内的__new__
    # 2、type.__call__函数内会调用Mymeta内的__init__
    # 3、type.__call__函数内会返回一个初始化好的对象
    
    class People(metaclass=Mymeta):
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
        def say(self):
            print('%s:%s' %(self.name,self.name))
    
        def __new__(cls, *args, **kwargs):
            # 产生真正的对象
            return object.__new__(cls)
    
    # 类的调用
    # obj=People('egon',18) =》Mymeta.__call__=》干了3件事
    # 1、Mymeta.__call__函数内会先调用People内的__new__
    # 2、Mymeta.__call__函数内会调用People内的__init__
    # 3、Mymeta.__call__函数内会返回一个初始化好的对象
    
    obj1=People('egon',18)
    obj2=People('egon',18)
    # print(obj)
    print(obj1.__dict__)
    print(obj2.__dict__)
    
    '''
    执行结果
    {'name': 'egon', 'age': 18, 'xxxxx': 11111}
    {'name': 'egon', 'age': 18, 'xxxxx': 11111}
    '''

    上例中涉及到查找属性的问题,比如self.__new__,请看下一小节

    #控制类的产生,在元类中定义
    __new__
    __init__
    
    #控制类的调用,在元类中定义
    __call__

    属性查找:

    结合python继承的实现原理+元类重新看属性的查找应该是什么样子呢???

    在学习完元类后,其实我们用class自定义的类也全都是对象(包括object类本身也是元类type的 一个实例,可以用type(object)查看),我们学习过继承的实现原理,如果把类当成对象去看,将下述继承应该说成是:对象StanfordTeacher继承对象Foo,对象Foo继承对象Bar,对象Bar继承对象object

    class Mymeta(type): #只有继承了type类才能称之为一个元类,否则就是一个普通的自定义类
        n=444
    
        def __call__(self, *args, **kwargs): #self=<class '__main__.StanfordTeacher'>
            obj=self.__new__(self)
            self.__init__(obj,*args,**kwargs)
            return obj
    
    class Bar(object):
        n=333
    
    class Foo(Bar):
        n=222
    
    class StanfordTeacher(Foo,metaclass=Mymeta):
        n=111
    
        school='Stanford'
    
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
        def say(self):
            print('%s says welcome to the Stanford to learn Python' %self.name)
    
    
    print(StanfordTeacher.n) #自下而上依次注释各个类中的n=xxx,然后重新运行程序,发现n的查找顺序为StanfordTeacher->Foo->Bar->object->Mymeta->type

    于是属性查找应该分成两层,一层是对象层(基于c3算法的MRO)的查找,另外一个层则是类层(即元类层)的查找

     

    #查找顺序:
    #1、先对象层:StanfordTeacher->Foo->Bar->object
    #2、然后元类层:Mymeta->type

    依据上述总结,我们来分析下元类Mymeta中__call__里的self.__new__的查找

    class Mymeta(type): 
        n=444
    
        def __call__(self, *args, **kwargs): #self=<class '__main__.StanfordTeacher'>
            obj=self.__new__(self)
            print(self.__new__ is object.__new__) #True
    
    
    class Bar(object):
        n=333
    
        # def __new__(cls, *args, **kwargs):
        #     print('Bar.__new__')
    
    class Foo(Bar):
        n=222
    
        # def __new__(cls, *args, **kwargs):
        #     print('Foo.__new__')
    
    class StanfordTeacher(Foo,metaclass=Mymeta):
        n=111
    
        school='Stanford'
    
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
        def say(self):
            print('%s says welcome to the Stanford to learn Python' %self.name)
    
    
        # def __new__(cls, *args, **kwargs):
        #     print('StanfordTeacher.__new__')
    
    
    StanfordTeacher('lili',18) #触发StanfordTeacher的类中的__call__方法的执行,进而执行self.__new__开始查找

    总结,Mymeta下的__call__里的self.__new__在StanfordTeacher、Foo、Bar里都没有找到__new__的情况下,会去找object里的__new__,而object下默认就有一个__new__,所以即便是之前的类均未实现__new__,也一定会在object中找到一个,根本不会、也根本没必要再去找元类Mymeta->type中查找__new__

    我们在元类的__call__中也可以用object.__new__(self)去造对象

    class Mymeta(type):
        n=444
    
        def __call__(self, *args, **kwargs): #self=<class '__main__.StanfordTeacher'>
            # obj=self.__new__(self) # StanfordTeacher.__new__
            obj=object.__new__(self)
            self.__init__(obj,*args,**kwargs)
            return obj
    
    class Bar(object):
        # n=333
    
        # def __new__(cls, *args, **kwargs):
        #     print('Bar.__new__')
        pass
    
    class Foo(Bar):
        # n=222
    
        # def __new__(cls, *args, **kwargs):
        #     print('Foo.__new__')
        pass
    
    class StanfordTeacher(Foo,metaclass=Mymeta):
        n=111
    
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
    
    obj=StanfordTeacher('lili',18)
    print(obj.__dict__)     #{'name': 'lili', 'age': 18}
    # print(obj.n)
    # print(StanfordTeacher.n)

    但我们还是推荐在__call__中使用self.__new__(self)去创造空对象,因为这种方式会检索三个类StanfordTeacher->Foo->Bar,而object.__new__则是直接跨过了他们三个

     示例:在元类中控制把自定义类的数据属性都变成大写

    class Mymetaclass(type):
        def __new__(cls,name,bases,attrs):
            update_attrs={}
            for k,v in attrs.items():
                if not callable(v) and not k.startswith('__'):
                    update_attrs[k.upper()]=v
                else:
                    update_attrs[k]=v
            return type.__new__(cls,name,bases,update_attrs)
    
    class Chinese(metaclass=Mymetaclass):
        country='China'
        tag='Legend of the Dragon' #龙的传人
        def walk(self):
            print('%s is walking' %self.name)
    
    
    print(Chinese.__dict__)
    '''
    {'__module__': '__main__',
     'COUNTRY': 'China', 
     'TAG': 'Legend of the Dragon',
     'walk': <function Chinese.walk at 0x0000000001E7B950>,
     '__dict__': <attribute '__dict__' of 'Chinese' objects>,                                         
     '__weakref__': <attribute '__weakref__' of 'Chinese' objects>,
     '__doc__': None}
    '''

    示例2:在元类中控制自定义的类无需__init__方法

    1.元类帮其完成创建对象,以及初始化操作;

    2.要求实例化时传参必须为关键字形式,否则抛出异常TypeError: must use keyword argument

    3.key作为用户自定义类产生对象的属性,且所有属性变成大写

    class Mymetaclass(type):
        # def __new__(cls,name,bases,attrs):
        #     update_attrs={}
        #     for k,v in attrs.items():
        #         if not callable(v) and not k.startswith('__'):
        #             update_attrs[k.upper()]=v
        #         else:
        #             update_attrs[k]=v
        #     return type.__new__(cls,name,bases,update_attrs)
    
        def __call__(self, *args, **kwargs):
            if args:
                raise TypeError('must use keyword argument for key function')
            obj = object.__new__(self) #创建对象,self为类Foo
    
            for k,v in kwargs.items():
                obj.__dict__[k.upper()]=v
            return obj
    
    class Chinese(metaclass=Mymetaclass):
        country='China'
        tag='Legend of the Dragon' #龙的传人
        def walk(self):
            print('%s is walking' %self.name)
    
    
    p=Chinese(name='lili',age=18,sex='male')
    print(p.__dict__)

    示例3:在元类中控制自定义的类产生的对象相关的属性全部为隐藏属性

    class Mymeta(type):
        def __init__(self,class_name,class_bases,class_dic):
            #控制类Foo的创建
            super(Mymeta,self).__init__(class_name,class_bases,class_dic)
    
        def __call__(self, *args, **kwargs):
            #控制Foo的调用过程,即Foo对象的产生过程
            obj = self.__new__(self)
            self.__init__(obj, *args, **kwargs)
            obj.__dict__={'_%s__%s' %(self.__name__,k):v for k,v in obj.__dict__.items()}
    
            return obj
    
    class Foo(object,metaclass=Mymeta):  # Foo=Mymeta(...)
        def __init__(self, name, age,sex):
            self.name=name
            self.age=age
            self.sex=sex
    
    
    obj=Foo('lili',18,'male')
    print(obj.__dict__)

    示例4:基于元类实现单例模式

    #步骤五:基于元类实现单例模式
    # 单例:即单个实例,指的是同一个类实例化多次的结果指向同一个对象,用于节省内存空间
    # 如果我们从配置文件中读取配置来进行实例化,在配置相同的情况下,就没必要重复产生对象浪费内存了
    #settings.py文件内容如下
    HOST='1.1.1.1'
    PORT=3306
    
    #方式一:定义一个类方法实现单例模式
    import settings
    
    class Mysql:
        __instance=None
        def __init__(self,host,port):
            self.host=host
            self.port=port
    
        @classmethod
        def singleton(cls):
            if not cls.__instance:
                cls.__instance=cls(settings.HOST,settings.PORT)
            return cls.__instance
    
    obj1=Mysql('1.1.1.2',3306)
    obj2=Mysql('1.1.1.3',3307)
    print(obj1 is obj2) #False
    
    obj3=Mysql.singleton()
    obj4=Mysql.singleton()
    print(obj3 is obj4) #True
    
    
    #方式二:定制元类实现单例模式(可以看下面__init__和__new__的例子)
    import settings
    
    class Mymeta(type):
        def __init__(self,name,bases,dic): #定义类Mysql时就触发
            # 事先先从配置文件中取配置来造一个Mysql的实例出来
            self.__instance = object.__new__(self)  # 产生对象
            self.__init__(self.__instance, settings.HOST, settings.PORT)  # 初始化对象
            # 上述两步可以合成下面一步
            # self.__instance=super().__call__(*args,**kwargs)
            super().__init__(name,bases,dic)
    
        def __call__(self, *args, **kwargs): #Mysql(...)时触发
            if args or kwargs: # args或kwargs内有值
                obj=object.__new__(self)
                self.__init__(obj,*args,**kwargs)
                return obj
            return self.__instance
    
    class Mysql(metaclass=Mymeta):
        def __init__(self,host,port):
            self.host=host
            self.port=port
    
    obj1=Mysql() # 没有传值则默认从配置文件中读配置来实例化,所有的实例应该指向一个内存地址
    obj2=Mysql()
    obj3=Mysql()
    print(obj1 is obj2 is obj3)
    obj4=Mysql('1.1.1.4',3307)
    
    
    #方式三:定义一个装饰器实现单例模式
    import settings
    
    def singleton(cls): #cls=Mysql
        _instance=cls(settings.HOST,settings.PORT)
    
        def wrapper(*args,**kwargs):
            if args or kwargs:
                obj=cls(*args,**kwargs)
                return obj
            return _instance
        return wrapper
    
    
    @singleton # Mysql=singleton(Mysql)
    class Mysql:
        def __init__(self,host,port):
            self.host=host
            self.port=port
    
    obj1=Mysql()
    obj2=Mysql()
    obj3=Mysql()
    print(obj1 is obj2 is obj3) #True
    
    obj4=Mysql('1.1.1.3',3307)
    obj5=Mysql('1.1.1.4',3308)
    print(obj3 is obj4) #False
    class Singleton(type):
        def __init__(self, *args, **kwargs):
            print("__init__")
            self.__instance = None
            # super(Singleton,self).__init__(*args, **kwargs)
    
        def __call__(self, *args, **kwargs):
            print("__call__")
            if self.__instance is None:
                self.__instance = super(Singleton,self).__call__(*args, **kwargs)
            return self.__instance
    
    
    class Foo(object,metaclass=Singleton):
        #在代码执行到这里的时候,元类中的__new__方法和__init__方法其实已经被执行了,而不是在Foo实例化的时候执行。且仅会执行一次。
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
    foo1 = Foo("egon",18)
    foo2 = Foo("alex",20)
    print(Foo.__dict__ ) #_Singleton__instance': <__main__.Foo object at 0x100c52f10> 存在一个私有属性来保存属性,而不会污染Foo类(其实还是会污染,只是无法直接通过__instance属性访问)
    
    print(foo1 is foo2)  # True
    基于元类实现单例(通过__init__和__call__)
    class Singleton(type):
        def __new__(cls, name, bases, attrs):
            print("__new__")
    
            attrs["_instance"] = None
            return super(Singleton, cls).__new__(cls, name, bases, attrs)
    
        def __call__(self, *args, **kwargs):
            print("__call__")
            if self._instance is None:
                self._instance = super(Singleton,self).__call__(*args, **kwargs)
            return self._instance
    
    
    class Foo(object,metaclass=Singleton):
        #在代码执行到这里的时候,元类中的__new__方法和__init__方法其实已经被执行了,而不是在Foo实例化的时候执行。且仅会执行一次。
        def __init__(self,name,age):
            self.name=name
            self.age=age
    
    foo1 = Foo("egon",18)
    foo2 = Foo("alex",20)
    print(Foo.__dict__ ) #_Singleton__instance': <__main__.Foo object at 0x100c52f10> 存在一个私有属性来保存属性,而不会污染Foo类(其实还是会污染,只是无法直接通过__instance属性访问)
    
    print(foo1 is foo2)  # True
    基于元类实现单例(通过__new__和__call__)
    #一种定义None
    def singleton_wrapper(cls):  # cls ---> Too
        _instance=None
        def inner(*args, **kwargs):
            nonlocal _instance
            # 若当前装饰的类不在字典中,则实例化新类
            # 判断当前装饰的Too类是否在字典中
            if not _instance:
                # obj = cls(*args, **kwargs)
                # return obj
                # 不在,则给字典添加 key为Too, value为Too()---> 实例对象
                # {Too: Too(*args, **kwargs)}
                _instance = cls(*args, **kwargs)
    
            # return 对应的实例对象cls(*args, **kwargs)
            return _instance
    
        return inner
    
    
    @singleton_wrapper  # singleton_wrapper(Too)
    class Too(object):
        def __init__(self,name):
            self.name=name
    
        def p_name(self):
            print(self.name)
    
    
    t1 = Too("egon")
    t2 = Too("alex")
    print(t1 is t2)  # True
    t1.p_name()
    t2.p_name()
    
    """
    True
    egon
    egon
    """
    
    #定义成一个字典
    def singleton_wrapper(cls):  # cls ---> Too
        # 因为装饰器可以给多个类使用,所以这里采用字典
        # 以类作为key, 实例对象作为value值
        _instance = {
            # 伪代码: 'Too': Too的示例对象
        }
        def inner(*args, **kwargs):
            # 若当前装饰的类不在字典中,则实例化新类
            # 判断当前装饰的Too类是否在字典中
            if cls not in _instance:
                # obj = cls(*args, **kwargs)
                # return obj
                # 不在,则给字典添加 key为Too, value为Too()---> 实例对象
                # {Too: Too(*args, **kwargs)}
                _instance[cls] = cls(*args, **kwargs)
    
            # return 对应的实例对象cls(*args, **kwargs)
            return _instance[cls]
    
        return inner
    
    
    @singleton_wrapper  # singleton_wrapper(Too)
    class Too(object):
        def __init__(self,name):
            self.name=name
    
        def p_name(self):
            print(self.name)
    
    
    t1 = Too("egon")
    t2 = Too("alex")
    print(t1 is t2)  # True
    t1.p_name()
    t2.p_name()
    
    """
    True
    egon
    egon
    """
    单例装饰器

    导入模块实现单例

    '''
    单例模式:
        单例模式是一个软件的设计模式,为了保证一个类,无论调用多少次产生的实例对象,
        都是指向同一个内存地址,仅仅只有一个实例(对象)!
    
        五种单例:
            - 模块
            - 装饰器
            - 元类
            - __new__
            - 类方法: classmethod
    '''
    
    方式五: 模块导入实现
    '''
    import cls_singleton
    
    s1 = cls_singleton.instance
    s2 = cls_singleton.instance
    
    print(s1 is s2)  # True
  • 相关阅读:
    4. Postman测试集的批量执行(转)
    3. Postman Tests断言(转)
    2. Postman发送各种格式请求的方法
    1. Postman的安装
    2. Django创建项目
    Redis学习笔记(一)
    Oracle连接查询
    Redis学习笔记(五)- 数据类型之set类型
    Redis学习笔记(四)-数据类型之list类型
    PL/SQL实现JAVA中的split()方法的小例子
  • 原文地址:https://www.cnblogs.com/baicai37/p/12707184.html
Copyright © 2011-2022 走看看