zoukankan      html  css  js  c++  java
  • python并发编程之IO模型

     

    一、IO模型介绍

    """
    我们这里研究的IO模型都是针对网络IO的
    Stevens在文章中一共比较了五种IO Model:
        * blocking IO           阻塞IO
        * nonblocking IO      非阻塞IO
        * IO multiplexing      IO多路复用
        * signal driven IO     信号驱动IO
        * asynchronous IO    异步IO
        由signal driven IO(信号驱动IO)在实际中并不常用,所以主要介绍其余四种IO Model。
    """

    对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,该操作会经历两个阶段:

    #1)等待数据准备 (Waiting for the data to be ready)
    #2)将数据从内核拷贝到进程中(Copying the data from the kernel to the process)
    同步异步
    阻塞非阻塞
    常见的网络阻塞状态:
          accept
        recv
        recvfrom
        
        send虽然它也有io行为 但是不在我们的考虑范围

    二、阻塞IO(blocking IO)

    """
    我们之前写的都是阻塞IO模型  协程除外
    """

    示例图:

    当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。

    而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。 所以,blocking IO的特点就是在IO执行的两个阶段(等待数据和拷贝数据两个阶段)都被block了。

    几乎所有的程序员第一次接触到的网络编程都是从listen()、send()、recv() 等接口开始的,使用这些接口可以很方便的构建服务器/客户机的模型。然而大部分的socket接口都是阻塞型的。如下图

    ps:所谓阻塞型接口是指系统调用(一般是IO接口)不返回调用结果并让当前线程一直阻塞,只有当该系统调用获得结果或者超时出错时才返回。

     

     示例:

    import socket
    
    
    server = socket.socket()
    server.bind(('127.0.0.1',8080))
    server.listen(5)
    
    
    while True:
        conn, addr = server.accept()
        while True:
            try:
                data = conn.recv(1024)
                if len(data) == 0:break
                print(data)
                conn.send(data.upper())
            except ConnectionResetError as e:
                break
        conn.close()
    # 在服务端开设多进程或者多线程 进程池线程池 其实还是没有解决IO问题    
    该等的地方还是得等 没有规避
    只不过多个人等待的彼此互不干扰

    三、非阻塞IO(non-blocking IO)

    示例图:

     

    从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是用户就可以在本次到下次再发起read询问的时间间隔内做其他事情,或者直接再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存(这一阶段仍然是阻塞的),然后返回。

    也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

    所以,在非阻塞式IO中,用户进程其实是需要不断的主动询问kernel数据准备好了没有。

     非阻塞IO示例:

    服务端:

    import socket
    import time
    
    
    server = socket.socket()
    server.bind(('127.0.0.1', 8081))
    server.listen(5)
    server.setblocking(False)
    # 将所有的网络阻塞变为非阻塞
    r_list = []
    del_list = []
    while True:
        try:
            conn, addr = server.accept()
            r_list.append(conn)
        except BlockingIOError:
            # time.sleep(0.5)    # 打开该行注释纯属为了方便查看效果
            print('列表的长度:',len(r_list))
            # print('做其他事')
            for conn in r_list:
                try:
                    data = conn.recv(1024)  # 没有消息 报错
                    if len(data) == 0:  # 客户端断开链接
                        conn.close()  # 关闭conn
                        # 将无用的conn从r_list删除
                        del_list.append(conn)
                        continue
                    conn.send(data.upper())
                except BlockingIOError:
                    continue
                except ConnectionResetError:
                    conn.close()
                    del_list.append(conn)
            # 挥手无用的链接
            for conn in del_list:
                r_list.remove(conn)
            del_list.clear()

    客户端:

    import socket
    
    
    client = socket.socket()
    client.connect(('127.0.0.1',8081))
    
    
    while True:
        client.send(b'hello world')
        data = client.recv(1024)
        print(data)

    总结:

    优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在“”同时“”执行)。

    缺点:

    #该模型会    长时间占用着CPU并且不干活 让CPU不停的空转(并不推荐该模型)

    四、多路复用IO(IO multiplexing)

    示例图:

    当监管的对象只有一个的时候 其实IO多路复用连阻塞IO都比不上!!!
    但是IO多路复用可以一次性监管很多个对象

    监管机制是操作系统本身就有的 如果你想要用该监管机制(select)
    需要你导入对应的select模块

    示例代码:

    服务器端:

    import socket
    import select
    
    
    server = socket.socket()
    server.bind(('127.0.0.1',8080))
    server.listen(5)
    server.setblocking(False)
    read_list = [server]
    
    
    while True:
        r_list, w_list, x_list = select.select(read_list, [], [])
        """
        帮你监管
        一旦有人来了 立刻给你返回对应的监管对象
        """
        # print(res)  # ([<socket.socket fd=3, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8080)>], [], [])
        # print(server)
        # print(r_list)
        for i in r_list:  #
            """针对不同的对象做不同的处理"""
            if i is server:
                conn, addr = i.accept()
                # 也应该添加到监管的队列中
                read_list.append(conn)
            else:
                res = i.recv(1024)
                if len(res) == 0:
                    i.close()
                    # 将无效的监管对象 移除
                    read_list.remove(i)
                    continue
                print(res)
                i.send(b'heiheiheiheihei')

    客户端:

    import socket
    
    
    client = socket.socket()
    client.connect(('127.0.0.1',8080))
    
    
    while True:
    
        client.send(b'hello world')
        data = client.recv(1024)
        print(data)

    总结:

    """
    监管机制其实有很多
    select机制  windows linux都有
    
    poll机制    只在linux有   poll和select都可以监管多个对象 但是poll监管的数量更多
    
    上述select和poll机制其实都不是很完美 当监管的对象特别多的时候
    可能会出现 极其大的延时响应
    
    epoll机制   只在linux有
        它给每一个监管对象都绑定一个回调机制
        一旦有响应 回调机制立刻发起提醒
    
    针对不同的操作系统还需要考虑不同检测机制 书写代码太多繁琐
    有一个人能够根据你跑的平台的不同自动帮你选择对应的监管机制
    selectors模块
    """

    五、异步IO(Asynchronous I/O)

    示例图:

    """
    异步IO模型是所有模型中效率最高的 也是使用最广泛的
    相关的模块和框架
        模块:asyncio模块
        异步框架:sanic tronado twisted
            速度快!!!
    """

    示例代码:

    import asyncio
    
    @asyncio.coroutine
    def hello():
        print("Hello world!")
        # 异步调用asyncio.sleep(1):
        r = yield from asyncio.sleep(1)
        print("Hello again!")
    
    # 获取EventLoop:
    loop = asyncio.get_event_loop()
    
    tasks = [hello(),hello()]
    loop.run_until_complete(asyncio.wait(tasks))
    print("")
    loop.close()
    
    '''
    Hello world!
    Hello world!
    Hello again!
    Hello again!
    主
    '''

    六、I/O模型的比较

    示例图:

  • 相关阅读:
    网页图表Highcharts实践教程标之添加题副标题版权信息
    S3C6410 裸机硬件JPEG解码(转)
    FPGA UART简单的串口接收模块
    unicode转GBK,GNK转unicode,解决FATFS中文码表占用ROM问题(转)
    Java 基础类型转换byte数组, byte数组转换基础类型
    JNI错误总结(转)
    Java通过JNI调用dll详细过程(转)
    UDP传输包大小(转)
    SD卡兼容性问题(转)
    汉字与区位码互转(转)
  • 原文地址:https://www.cnblogs.com/baicai37/p/12794520.html
Copyright © 2011-2022 走看看