zoukankan      html  css  js  c++  java
  • HeapSort 堆排序 基于伪代码实现

     此文原创, http://www.cnblogs.com/baokang/p/4735431.html ,禁止转载

    GIF 动态图 

     

     

    伪代码

    /* From Wikipedia, the free encyclopedia */

    1.父子节点特征

    iParent = floor((i-1) / 2);
    iLeftChild = 2*i + 1;
    iRightChild = 2*i + 2;

    2.算法伪代码

    /* 保持原汁原味就不翻译了 =。= */

    procedure heapsort(a, count) is
        input: an unordered array a of length count
     
        (Build the heap in array a so that largest value is at the root)
        heapify(a, count)
    
        (The following loop maintains the invariants that a[0:end] is a heap and every element
         beyond end is greater than everything before it (so a[end:count] is in sorted order))
        end ← count - 1
        while end > 0 do
            (a[0] is the root and largest value. The swap moves it in front of the sorted elements.)
            swap(a[end], a[0])
            (the heap size is reduced by one)
            end ← end - 1
            (the swap ruined the heap property, so restore it)
            siftDown(a, 0, end)
    (Put elements of 'a' in heap order, in-place)
    procedure heapify(a, count) is
        (start is assigned the index in 'a' of the last parent node)
        (the last element in a 0-based array is at index count-1; find the parent of that element)
        start ← floor ((count - 2) / 2)
        
        while start ≥ 0 do
            (sift down the node at index 'start' to the proper place such that all nodes below
             the start index are in heap order)
            siftDown(a, start, count - 1)
            (go to the next parent node)
            start ← start - 1
        (after sifting down the root all nodes/elements are in heap order)
    
    (Repair the heap whose root element is at index 'start', assuming the heaps rooted at its children are valid)
    procedure siftDown(a, start, end) is
        root ← start
    
        while root * 2 + 1 ≤ end do    (While the root has at least one child)
            child ← root * 2 + 1       (Left child)
            swap ← root                (Keeps track of child to swap with)
    
            if a[swap] < a[child]
                swap ← child
            (If there is a right child and that child is greater)
            if child+1 ≤ end and a[swap] < a[child+1]
                swap ← child + 1
            if swap = root
                (The root holds the largest element. Since we assume the heaps rooted at the
                 children are valid, this means that we are done.)
                return
            else
                swap(a[root], a[swap])
                root ← swap            (repeat to continue sifting down the child now)

    Java实现

     1     public void heapsort(int[] a, int count) {
     2         if (count < 2)
     3             return;
     4         heapify(a, count);
     5         int end = count - 1;
     6         while (end > 0) {
     7             swap(a, 0, end);
     8             end--;
     9             siftdown(a, 0, end);
    10         }
    11     }
    12     public void heapify(int[] a, int count) {
    13         int start = (count - 2) / 2;
    14         while (start >= 0) {
    15             siftdown(a, start, count - 1);
    16             start--;
    17         }
    18     }
    19     public void siftdown(int[] a, int start, int end) {
    20         int root = start;
    21 
    22         while (root * 2 + 1 <= end) {
    23             int child = root * 2 + 1;
    24             int swap = root;
    25 
    26             if (a[swap] < a[child]) {
    27                 swap = child;
    28             }
    29             if (child + 1 <= end && a[swap] < a[child + 1]) {
    30                 swap = child + 1;
    31             }
    32             if (root == swap) {
    33                 return;
    34             } else {
    35                 swap(a, root, swap);
    36             }
    37             root = swap;
    38         }
    39     }
    40     public void swap(int[] a, int i, int j) {
    41         int t = a[i];
    42         a[i] = a[j];
    43         a[j] = t;
    44     }
  • 相关阅读:
    GIS 空间分析案例教程-坐标高斯投影正反算
    GIS 空间分析案例分析-错误排除经验总结
    第一个Json.Net Demo
    点到折线最短距离所在点距离折线起点的累积距离
    使用Proj.Net创建空间参考
    C#通过存储过程进行查询
    分幅输出影像瓦片
    ArcEngine和GDAL读写栅格数据机制对比(二)—— IPixelBlock读写栅格
    Web开发学习
    [3D]绘制XYZ小坐标轴
  • 原文地址:https://www.cnblogs.com/baokang/p/4735431.html
Copyright © 2011-2022 走看看