1、开发环境:
Anaconda3;
python 3.6.4;
爬虫部分
使用Requests处理http,post请求。Beautiful Soup处理HTML页面标签并提取信息。目标网站是谣言百科网站,其实这个实战是我谣言处理系统的一部分,但是现阶段对于谣言处理系统我遇到了问题就是精度提高。现阶段的方法我的想法是,第一个数据集增加,因为网络上很多谣言都是相似的,尤其是养生,历史之类的谣言新闻都是完全重复或者部分重复率很高的,这个算是从数据特征点出发的办法。
上代码:
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ from urllib import request from bs4 import BeautifulSoup import re #import sys import codecs if __name__ == "__main__": text_file_number = 0 # 同一类新闻下的索引数 number = 1 # 同类别新闻不同页面下的索引数 while (number <= 5): if number==1: # 第一个新闻下地址是baby不是baby_数字所以要区分判断一下 get_url = 'http://www.yaoyanbaike.com/category/baby.html' else: get_url = 'http://www.yaoyanbaike.com/category/baby_' + str(number) + '.html' #这个是baby_数字,number就是目录索引数 head = {} #设置头 head['User-Agent'] = 'Mozilla/5.0 (Linux; Android 4.1.1; Nexus 7 Build/JRO03D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Safari/535.19' # 模拟浏览器模式,定制请求头 download_req_get = request.Request(url = get_url, headers = head)# 设置Request download_response_get = request.urlopen(download_req_get)# 设置urlopen获取页面所有内容 download_html_get = download_response_get.read().decode('UTF-8','ignore') # UTF-8模式读取获取的页面信息标签和内容 soup_texts = BeautifulSoup(download_html_get, 'lxml') # BeautifulSoup读取页面html标签和内容的信息 for link in soup_texts.find_all(["a"]): print(str(text_file_number)+ " " + str(number) + " "+ link.get('href'))# 打印文件地址用于测试 s = link.get('href') if s.find("/a/") == -1: print("错误网址") # 只有包含"/a/"字符的才是有新闻的有效地址 else: download_url = link.get('href') head = {} head['User-Agent'] = 'Mozilla/5.0 (Linux; Android 4.1.1; Nexus 7 Build/JRO03D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Safari/535.19' download_req = request.Request(url = "http://www.yaoyanbaike.com" + download_url, headers = head) print("http://www.yaoyanbaike.com" + download_url) download_response = request.urlopen(download_req) download_html = download_response.read().decode('UTF-8','ignore') soup_texts = BeautifulSoup(download_html, 'lxml') texts = soup_texts.find_all('article') soup_text = BeautifulSoup(str(texts), 'lxml') p = re.compile("<[^>]+>") text=p.sub("", str(soup_text))# 去除页面标签 f1 = codecs.open('F:\test\'+str(text_file_number)+'.txt','w','UTF-8') # 将信息存储在本地 f1.write(text) f1.close() text_file_number = text_file_number + 1 number = number + 1
总结:
一个比较简单的爬虫实践,但是还是能有清晰的爬虫思路,值得收藏!