zoukankan      html  css  js  c++  java
  • 【原创】大数据基础之ETL vs ELT or DataWarehouse vs DataLake

    ETL

    ETL is an abbreviation of Extract, Transform and Load. In this process, an ETL tool extracts the data from different RDBMS source systems then transforms the data like applying calculations, concatenations, etc. and then load the data into the Data Warehouse system.

    In ETL data is flows from the source to the target. In ETL process transformation engine takes care of any data changes.

    ELT

    ELT is a different method of looking at the tool approach to data movement. Instead of transforming the data before it's written, ELT lets the target system to do the transformation. The data first copied to the target and then transformed in place.

    ELT usually used with no-Sql databases like Hadoop cluster, data appliance or cloud installation.

    Data Warehouse vs Data Lake

    ETL对应的是Data Warehouse,而ELT对应Data Lake,那什么是Data Lake?

    A data lake is a system or repository of data stored in its natural format, usually object blobs or files. A data lake is usually a single store of all enterprise data including raw copies of source system data and transformed data used for tasks such as reporting, visualization, analytics and machine learning. A data lake can include structured data from relational databases (rows and columns), semi-structured data (CSV, logs, XML, JSON), unstructured data (emails, documents, PDFs) and binary data (images, audio, video).

    Pentaho CTO James Dixon has generally been credited with coining the term “data lake”. He describes a data mart (a subset of a data warehouse) as akin to a bottle of water…”cleansed, packaged and structured for easy consumption” while a data lake is more like a body of water in its natural state. Data flows from the streams (the source systems) to the lake. Users have access to the lake to examine, take samples or dive in.

    参考:
    https://www.guru99.com/etl-vs-elt.html
    https://aws.amazon.com/cn/big-data/datalakes-and-analytics/what-is-a-data-lake/
    https://www.blue-granite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses
    https://www.forbes.com/sites/bernardmarr/2018/08/27/what-is-a-data-lake-a-super-simple-explanation-for-anyone/#672125e776e0
    https://blog.panoply.io/etl-vs-elt-the-difference-is-in-the-how
    https://www.xplenty.com/blog/etl-vs-elt/

  • 相关阅读:
    Java文件的 In 与 Out 的相对性
    EBS 生产环境并发管理器重启步骤详解经验啊
    HDOJ1285 确定比赛名次(拓扑排序)
    对线性回归、逻辑回归、各种回归的概念学习
    一个截屏工具制作的全过程记录——如何使用“拿来主义”
    免费的响应式bootstrap管理员后台界面主题 Charisma
    挖掘管理价值:企业软件项目管理实战
    浏览器自动填充表单导致网页样式丢失
    「译」开发者如何提升和推销自己
    xcopy的一次误用及解决办法
  • 原文地址:https://www.cnblogs.com/barneywill/p/10718837.html
Copyright © 2011-2022 走看看