zoukankan      html  css  js  c++  java
  • 【原创】大数据基础之ETL vs ELT or DataWarehouse vs DataLake

    ETL

    ETL is an abbreviation of Extract, Transform and Load. In this process, an ETL tool extracts the data from different RDBMS source systems then transforms the data like applying calculations, concatenations, etc. and then load the data into the Data Warehouse system.

    In ETL data is flows from the source to the target. In ETL process transformation engine takes care of any data changes.

    ELT

    ELT is a different method of looking at the tool approach to data movement. Instead of transforming the data before it's written, ELT lets the target system to do the transformation. The data first copied to the target and then transformed in place.

    ELT usually used with no-Sql databases like Hadoop cluster, data appliance or cloud installation.

    Data Warehouse vs Data Lake

    ETL对应的是Data Warehouse,而ELT对应Data Lake,那什么是Data Lake?

    A data lake is a system or repository of data stored in its natural format, usually object blobs or files. A data lake is usually a single store of all enterprise data including raw copies of source system data and transformed data used for tasks such as reporting, visualization, analytics and machine learning. A data lake can include structured data from relational databases (rows and columns), semi-structured data (CSV, logs, XML, JSON), unstructured data (emails, documents, PDFs) and binary data (images, audio, video).

    Pentaho CTO James Dixon has generally been credited with coining the term “data lake”. He describes a data mart (a subset of a data warehouse) as akin to a bottle of water…”cleansed, packaged and structured for easy consumption” while a data lake is more like a body of water in its natural state. Data flows from the streams (the source systems) to the lake. Users have access to the lake to examine, take samples or dive in.

    参考:
    https://www.guru99.com/etl-vs-elt.html
    https://aws.amazon.com/cn/big-data/datalakes-and-analytics/what-is-a-data-lake/
    https://www.blue-granite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses
    https://www.forbes.com/sites/bernardmarr/2018/08/27/what-is-a-data-lake-a-super-simple-explanation-for-anyone/#672125e776e0
    https://blog.panoply.io/etl-vs-elt-the-difference-is-in-the-how
    https://www.xplenty.com/blog/etl-vs-elt/

  • 相关阅读:
    数论笔记
    哈哈哈
    闭关修炼屯题中,期末考完A
    acm几何
    POJ
    Educational Codeforces Round 42 (Rated for Div. 2) D.Merge Equals (优先队列)
    Educational Codeforces Round 42 (Rated for Div. 2) C. Make a Square (dfs)
    牛客网 VVQ 与线段 (优先队列或线段树或RMQ)
    Educational Codeforces Round 41 (Rated for Div. 2) C.Chessboard (DP)
    Educational Codeforces Round 41 (Rated for Div. 2)D. Pair Of Lines
  • 原文地址:https://www.cnblogs.com/barneywill/p/10718837.html
Copyright © 2011-2022 走看看