Memory and Scores
题目链接:http://codeforces.com/contest/712/problem/D
dp
因为每轮Memory和Lexa能取的都在[-k,k],也就是说每轮两人分数的变化量在[-2k,2k];
故可以定义状态:dp[times][diff]为第times次Memory和Lexa的分数差为diff的方案数.
而dp[times][diff]可以从dp[times-1][diff-2k]到dp[times-1][diff+2k]转移而来;
又因为变化量为-2k时的方案数为1(-k,k),
变化量为-2k+1时的方案数为2(-k,k-1;-k+1,k),
变化量为-2k+2时的方案数为3(-k,k-2;-k+1,k-1;-k+2,k),
...,
变化量为-2k+m时的方案数为m+1,
...,
变化量为0时的方案数为2k+1,
...,
变化量为2k-m时的方案数为m+1,
...,
变化量为2k-1时的方案数为2,
变化量为2k时的方案数为1.
所以状态转移方程为:dp[times][diff]=dp[times-1][diff-2k]+2*dp[times-1][diff-2k+1]+3*dp[times-1][diff-2k+2]+...+(m+1)*dp[times-1][diff-2k+m]+...+2*dp[times-1][diff+2k-1]+dp[times-1][diff+2k];
这样的话,时间复杂度为O(k2t2),代码如下:

1 #include<iostream> 2 #include<cmath> 3 #define M 1000000007LL 4 #define TIME 105 5 #define DIFF 300000 6 #define BASE 150000 7 using namespace std; 8 typedef long long LL; 9 LL a,b,k,t,ans; 10 LL dp[TIME][DIFF]; 11 int main(void){ 12 cin>>a>>b>>k>>t; 13 dp[0][a-b+BASE]=1; 14 LL upper=a-b+BASE+2*k*t; 15 LL lower=a-b+BASE-2*k*t; 16 for(LL times=1;times<=t;++times){ 17 for(LL diff=lower;diff<=upper;diff++){ 18 for(LL m=0;m<=2*k;m++){ 19 LL add=-2*k+m; 20 if(diff+add>=lower){ 21 if(add)dp[times][diff]+=(dp[times-1][diff+add]+dp[times-1][diff-add])*(m+1); 22 else dp[times][diff]+=dp[times-1][diff]*(m+1); 23 dp[times][diff]%=M; 24 } 25 } 26 } 27 } 28 for(int i=BASE+1;i<=upper;++i) 29 ans=(ans+dp[t][i])%M; 30 cout<<ans<<endl; 31 }
很显然,这会T,所以必须做出优化。
注意到:
dp[times][diff]是在dp[times][diff-1]的基础上前半段各个项减一,后半段各个项加一得到的,所以可以维护一个前缀和数组pre[i],那么
dp[times][diff]=dp[times][diff-1]+(pre[diff+2k]-pre[diff-1])-(pre[diff-1]-pre[(diff-1)-2k-1])
可以在O(1)的时间内完成,优化后的代码时间复杂度为O(kt2),代码如下:
1 #include<iostream> 2 #include<cmath> 3 #define M 1000000007LL 4 #define TIME 105 5 #define DIFF 500000 6 #define BASE 250000 7 using namespace std; 8 typedef long long LL; 9 LL a,b,k,t,ans; 10 LL dp[TIME][DIFF]; 11 LL pre[DIFF]; 12 int main(void){ 13 cin>>a>>b>>k>>t; 14 dp[0][a-b+BASE]=1; 15 LL upper=a-b+BASE+2*k*t; 16 LL lower=a-b+BASE-2*k*t; 17 for(LL times=1;times<=t;++times){ 18 for(LL diff=lower;diff<=upper;diff++) 19 pre[diff]=pre[diff-1]+dp[times-1][diff],pre[diff]%=M; 20 for(LL m=0;m<=2*k;m++){ 21 LL add=-2*k+m; 22 if(add)dp[times][lower] 23 +=(dp[times-1][lower+add]+dp[times-1][lower-add])*(m+1); 24 else dp[times][lower]+=dp[times-1][lower]*(m+1); 25 dp[times][lower]%=M; 26 } 27 for(LL diff=lower+1;diff<=upper;diff++){ 28 dp[times][diff]=dp[times][diff-1] 29 +(pre[min(upper,diff+2*k)]-pre[diff-1]) 30 -(pre[diff-1]-pre[max(lower,diff-1-2*k)-1]); 31 dp[times][diff]=(dp[times][diff]+M)%M; 32 //记得+M,减法模运算可能会出现负数 33 } 34 } 35 for(int i=BASE+1;i<=upper;++i) 36 ans=(ans+dp[t][i])%M; 37 cout<<ans<<endl; 38 }
这样的代码仍然可以优化:
1.可以用滚动数组来优化空间复杂度,从O(kt2)降低到O(kt),太懒没写╮(╯▽╰)╭;
2.可以用快速傅里叶变换FFT优化时间复杂度,从O(kt2)继续降到O(kt lg(kt)),没学还不会写╮(╯▽╰)╭
//昨天去面试微软俱乐部被嘲讽=。= 定个目标吧,这学期div2稳定4题怎么样?