HDU 3507:Print Article
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507
题目大意:给定$n$,$m$,输出序列$n$个数,每连续输出代价为连续输出的数字和的平方加上$m$.
斜率优化DP
定义$sum_{pq}=sum_{k=p+1}^qa_k=pre[q]-pre[p]$,其中$pre[]$维护的是前缀和.
直接DP:$dp[i]=min{dp[q]+sum_{qi}+m}(q<i)$,如此复杂度为$O(n^2)$,故需要优化.
设$p<q$,若从$q$转移而来比从$p$更优,则有$dp[q]+sum_{qi}+m<dp[p]+sum_{pi}+m$,
化简可得,$frac{(dp[q]+pre[q]^2)-(dp[p]+pre[p]^2)}{2pre[q]-2pre[p]}<pre[i]$.
定义映射$f$,使得$kxrightarrow{f} (2pre[k],dp[k]+pre[k]^2)$,$g[p,q]$为$f(p)$和$f(q)$两点的斜率,
则有,若$g[p,q]<pre[i]$,则$q$比$p$更优.
当$p<k<q$且$g[p,k]>g[k,q]$时,不难证明$k$一定不为最优:
当$g[k,q]<pre[i]$时,$q$比$k$更优;当$g[k,q]geqslant pre[i]$时,有$g[p,k]>pre[i]$,故$p$比$k$更优.
考虑$pre[i]$数列的单调性,我们只需维护一个斜率递增的队列即可.
代码如下:
1 #include <cstdio> 2 #define N 500005 3 using namespace std; 4 typedef long long ll; 5 int n,m,dp[N],a[N],pre[N],deq[N],r,f; 6 int y(int n){return dp[n]+pre[n]*pre[n];} 7 int x(int n){return 2*pre[n];} 8 int main(void){ 9 while(~scanf("%d%d",&n,&m)){ 10 r=-1,f=0; 11 deq[++r]=0; 12 for(int i=1;i<=n;++i){ 13 scanf("%d",&a[i]); 14 pre[i]=pre[i-1]+a[i]; 15 } 16 for(int i=1;i<=n;++i){ 17 while(r-f>0){ 18 if(y(deq[f+1])-y(deq[f]) 19 <=pre[i]*(x(deq[f+1])-x(deq[f]))) 20 f++; 21 else break; 22 } 23 dp[i]=dp[deq[f]]+(pre[i]-pre[deq[f]])*(pre[i]-pre[deq[f]])+m; 24 while(r-f>0){ 25 if((y(deq[r])-y(deq[r-1]))*(x(i)-x(deq[r])) 26 >=(y(i)-y(deq[r]))*(x(deq[r])-x(deq[r-1]))) 27 r--; 28 else break; 29 } 30 deq[++r]=i; 31 } 32 printf("%d ",dp[n]); 33 } 34 }