zoukankan      html  css  js  c++  java
  • Beautiful Painting

    There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.

    We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements of a in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.

    Input

    The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.

    The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.

    Output

    Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.

    Example
    Input
    5
    20 30 10 50 40
    Output
    4
    Input
    4
    200 100 100 200
    Output
    2
    Note

    In the first sample, the optimal order is: 10, 20, 30, 40, 50.

    In the second sample, the optimal order is: 100, 200, 100, 200.

     1 #include<stdio.h>
     2 #include<algorithm>
     3 #define maxn 1000
     4 using namespace std;
     5 int a[maxn],v[maxn];
     6 int main()
     7 {
     8     int n,ans;
     9     while(scanf("%d",&n)!=EOF){
    10         for(int i=0;i<n;i++)
    11             scanf("%d",&a[i]);
    12         sort(a,a+n);
    13         for(int i=0;i<=n;i++)
    14             v[i]=1;
    15         ans=0;
    16         for(int i=0;i<n;i++){
    17             if(a[i]==a[i+1])
    18                 v[ans]++;
    19             else ans++;
    20         }
    21         int sum=0;
    22         sort(v,v+ans);
    23         for(int i=0;i<ans-1;i++)
    24             sum+=v[i];
    25         printf("%d
    ",sum);
    26     }
    27     return 0;
    28 }
  • 相关阅读:
    Java数据结构之栈(Stack)
    Java数据结构之单向环形链表(解决Josephu约瑟夫环问题)
    Java数据结构之双向链表
    zookeeper:JavaApi操作节点
    zookeeper:3
    单例模式
    zookeeper:2
    架构版本
    zookeeper:1
    Java反射
  • 原文地址:https://www.cnblogs.com/bearkid/p/7287290.html
Copyright © 2011-2022 走看看