zoukankan      html  css  js  c++  java
  • 阻塞非阻塞同异步 同步调用异步调用 异步调用返回函数

    阻塞

    ​ 调用结果返回之前, 当前线程会被挂起(如遇到IO操作). 函数只有在得到结果之后才会将阻塞的线程激活.

    非阻塞

    ​ 和阻塞的概念相对应, 指在不能立即得到结果之前也会立刻返回, 同时该函数不会阻塞当前线程

    同步

    ​ 在一个功能调用时, 在没有得到结果之前, 该调用就不会返回

    异步

    ​ 和同步相对, 当一个异步功能调用发出后, 调用者不能立刻得到结果.

    总结

    ​ 同步与异步针对的是函数/任务的调用方式: 同步就是当一个进程发起一个函数(任务)调用的时候, 一直等到函数(任务)完成, 而进程继续处于激活状态. 而异步情况下是当一个进程发起一个函数(任务)调用的时候, 不会等函数返回, 而是继续往下执行, 函数返回的时候通过状态, 通知, 事件等方式通知进程任务完成

    ​ 阻塞与非阻塞针对的是进程或线程: 阻塞是当请求不能满足的时候就将进程挂起, 而非阻塞则不会阻塞当前进程

    同步调用 异步调用

    同步调用

    ​ apply 一个累计1亿次的任务, 该调用会一直等待, 知道任务返回结果为止, 但并未阻塞住(即便是被抢走CPU的执行权限, 那也是处于就绪状态)

    from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
    import time
    import os
    import random
    
    def task(i):
        print(f"{os.getpid()}开始任务")
        time.sleep(random.randint(1,3))
        print(f"{os.getpid()}任务结束")
        return i
    
    if __name__ == '__main__':
        pool = ProcessPoolExecutor()
        for i in range(10):
            obj = pool.submit(task, i)
            print(f"任务结果:{obj.result()}")
    		# obj 是一个动态对象, 返回的当前的对象的状态, 有可能运行中, 可能就绪阻塞, 还可能是结束了
            # obj.result() 必须等到这个任务完成后, 返回了结果之后, 再执行下一个任务
        pool.shutdown()
        # shutdown 让主进程等待进程池中所有的子进程都结束任务之后再执行, 类似join
        # 在上一个进程池没有完成所有的任务之前, 不允许添加新的任务
        # 一个任务是通过一个函数实现的, 任务完成了他的返回值就是函数的返回值
        print("===主")
    

    异步调用

    ​ 发起异步调用后, 并不会等待任务结束才返回, 相反, 会立即获取一个临时结果(并不是最终的结果, 可能是封装好的一个对象)

    from concurrent.futures import ProcessPoolExecutor
    import time
    import os
    import random
    
    def task(i):
        print(f"{os.getpid()}开始任务")
        time.sleep(random.randint(1,3))
        print(f"{os.getpid()}任务结束")
        return i
    
    if __name__ == '__main__':
        pool = ProcessPoolExecutor()
        for i in range(10):
            obj = pool.submit(task, i)
        pool.shutdown()
        print("===主")
    

    异步调用如何取结果

    统一回收结果

    ​ 不能马上收到任何一个已经完成的任务的返回值, 只能等到所有的任务全部结束统一回收

    from concurrent.futures import ProcessPoolExecutor
    import time
    import os
    import random
    
    def task(i):
        print(f"{os.getpid()}开始任务")
        time.sleep(random.randint(1,3))
        print(f"{os.getpid()}任务结束")
        return i
    
    if __name__ == '__main__':
        lst = []
        pool = ProcessPoolExecutor()
        for i in range(10):
            obj = pool.submit(task, i)
            lst.append(obj)
        pool.shutdown()
        print(lst)
        for i in lst:
            print(i.result())
        print("===主")
    
    完成任务后立刻返回结果

    ​ 异步调用 + 回调函数

    异步调用 + 回调函数

    浏览器

    ​ 工作原理:

    ​ 向服务端发送一个请求, 服务端验证你的请求, 如果正确, 给你的浏览器返回一个文件, 浏览器接收到文件, 将文件里面的代码渲染成你看到的漂亮美丽的样子.

    爬虫

    ​ 利用代码模拟一个浏览器, 进行浏览器的工作流程得到一堆源代码.

    ​ 对源代码进行数据清洗得到我想要的数据

    import requests
    ret = requests.get("http://www.baidu.com")
    if ret.status_code == 200:
        print(ret.text)
    

    回调函数

    版本一

    import requests
    
    def task(url):
        ret = requests.get(url)
        if ret.status_code == 200:
            return ret.text
    
    
    def parse(content):
        return len(content)
    
    
    if __name__ == '__main__':
    	    url_list = ['http://www.baidu.com',
                    'http://www.JD.com',
                    'http://www.JD.com',
                    'http://www.JD.com',
                    'http://www.taobao.com',
                    'https://www.cnblogs.com/jin-xin/articles/7459977.html',
                    'https://www.luffycity.com/',
                    'https://www.cnblogs.com/jin-xin/articles/9811379.html',
                    'https://www.cnblogs.com/jin-xin/articles/11245654.html',
                    'https://www.sina.com.cn/']
        pool = ThreadPoolExecutor(4)
        obj_list = []
        for url in url_list:
            obj = pool.submit(task, url)
            obj_list.append(obj)
    
        pool.shutdown()
        for res in obj_list:
            print(parse(res.result()))
        print("==主")
    

    ​ 线程池设置4 个线程, 异步发起10 个任务, 每个任务是通过网页获取源码, 并发执行, 最后统一用列表回收10 个任务, 串行着分析源码

    ​ 缺点:

    ​ 1. 异步发出10个任务, 并发的执行, 但是统一的接收所有的任务的返回值(效率低, 不能实时的获取结果)

    ​ 2. 分析结果流程是串行, 影响效率

    ​ 针对版本一的缺点 2 , 改进, 让串行编程并发或者并行

    版本二

    from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
    import time
    import random
    import os
    import requests
    
    def task(url):
        ret = requests.get(url)
        if ret.status_code == 200:
            return ret.text
    
    
    def parse(content):
        return len(content)
    
    
    if __name__ == '__main__':
        url_list = ['http://www.baidu.com',
                    'http://www.JD.com',
                    'http://www.JD.com',
                    'http://www.JD.com',
                    'http://www.taobao.com',
                    'https://www.cnblogs.com/jin-xin/articles/7459977.html',
                    'https://www.luffycity.com/',
                    'https://www.cnblogs.com/jin-xin/articles/9811379.html',
                    'https://www.cnblogs.com/jin-xin/articles/11245654.html',
                    'https://www.sina.com.cn/']
        pool = ThreadPoolExecutor(4)
        obj_list = []
        for url in url_list:
            obj = pool.submit(task, url)
            obj_list.append(obj)
    
        pool.shutdown()
        for res in obj_list:
            print(parse(res.result()))
        print("==主")
    

    ​ 线程池设置4 个线程, 异步发起10个任务, 每个任务是通过网页获取源码 + 数据分析, 并发执行, 最后将所有的结果展示出来.

    ​ 耦合性增强了

    ​ 并发执行任务, 次任务最好是IO阻塞, 才能发挥最大的效果

    版本三

    ​ 基于异步调用回收所有任务的结果, 做到实时回收, 并发执行任务每个任务只是处理 IO 阻塞的, 不能增加新的功能

    from concurrent.futures import ThreadPoolExecutor
    import requests
    
    def task(url):
        ret = requests.get(url)
        if ret.status_code == 200:
            return ret.text
    
    def parse(obj):
        print(len(obj.result()))
    
    if __name__ == '__main__':
        url_lst = ["http://www.baidu.com",
                   "http://www.JD.com",
                   "http://www.JD.com",
                   "http://www.JD.com",
                   "http://www.taobao.com",
                   "https://www.cnblogs.com/jin-xin/articles/7459977.html",
                   "https://www.luffycity.com/",
                   "https://www.cnblogs.com/jin-xin/articles/9811379.html",
                   "https://www.cnblogs.com/jin-xin/articles/11245654.html",
                   "https://www.sina.com.cn/"]
        pool = ThreadPoolExecutor(4)
    
        for url in url_lst:
            obj = pool.submit(task, url)
            obj.add_done_callback(parse)
    

    ​ 当线程池设置4个线程, 异步发起10个任务, 每个任务是通过网页获取源码, 并发执行, 当一个任务完成之后, 将parse这个分析代码的任务交由剩余的空闲的线程去执行, 你这个线程继续去处理其他任务.

    进程池 + 回调函数

    ​ 回调函数由主进程去执行

    线程池 + 回调函数

    ​ 回到函数由空闲的线程去执行

    小结:

    ​ 异步站在发布任务的角度

    ​ 回调站在接收结果的角度, 按顺序接收每个任务的结果, 进行下一步处理

    ​ 异步处理的IO类型

    ​ 回调处理非IO

  • 相关阅读:
    JS函数调用的方法
    JS 正则表达式
    JS replace()方法-字符串首字母大写
    JS案例之3——倒计时
    JS案例之2——cycle元素轮播
    jsp自定义标签
    每日记载内容总结23
    maven项目部分知识
    eclipse中整合springMvc,velocity和sitemesh
    eclipse中整合springMvc和velocity
  • 原文地址:https://www.cnblogs.com/beichen123/p/11936662.html
Copyright © 2011-2022 走看看