Description
一个图, (n) 个点 (m) 条边,求将一条边距离翻倍后使 (1-n) 最短路径增加的最大增量.
Sol
Dijstra.
先跑一边最短路,然后枚举最短路,将路径翻倍然后跑Dijstra...
因为不在最短路径上的边没用贡献,然后最短路径最长为 (n-1)
复杂度 (O(nmlogm)
Code
/************************************************************** Problem: 3445 User: BeiYu Language: C++ Result: Accepted Time:32 ms Memory:3332 kb ****************************************************************/ #include <cstdio> #include <cstring> #include <utility> #include <vector> #include <queue> #include <functional> #include <iostream> using namespace std; typedef long long LL; typedef pair< LL,int > pr; #define mpr make_pair const int N = 255; int n,m,cnt; int b[N],p[N]; LL ans,disn; LL d[N]; struct Edge{ int fr,to;LL w; }edge[N*N*2]; vector< int > g[N]; priority_queue< pr,vector< pr >,greater< pr > > q; vector< int > path; inline int in(int x=0){ scanf("%d",&x);return x; } void Add_Edge(int fr,int to,int w){ edge[++cnt]=(Edge){ fr,to,w }; g[fr].push_back(cnt); } void GetPath(){ for(int x=n;x!=1;x=edge[p[x]].fr) path.push_back(p[x]); } void Dijstra(int s,int fst){ memset(b,0,sizeof(b)); memset(d,0x3f,sizeof(d)); d[s]=0,q.push(mpr(0LL,s)); for(int x;!q.empty();){ x=q.top().second,q.pop();if(b[x]) continue;b[x]=1; for(int i=0,lim=g[x].size();i<lim;i++){ int v=edge[g[x][i]].to;LL w=edge[g[x][i]].w; // cout<<x<<" "<<v<<" "<<w<<" "<<d[x]<<" "<<d[v]<<endl; if(d[x]+w < d[v]){ d[v]=d[x]+w,p[v]=g[x][i]; q.push(mpr(d[v],v)); } } } // cout<<d[n]<<endl; if(fst) disn=d[n],GetPath(); else ans=max(ans,d[n]-disn); } int main(){ n=in(),m=in(); for(int i=1,u,v,w;i<=m;i++) u=in(),v=in(),w=in(),Add_Edge(u,v,w),Add_Edge(v,u,w); Dijstra(1,1); // for(int i=0,lim=path.size();i<lim;i++) cout<<edge[path[i]].fr<<" "<<edge[path[i]].to<<" "<<edge[path[i]].w<<endl; for(int i=0,lim=path.size();i<lim;i++) edge[path[i]].w*=2,Dijstra(1,0),edge[path[i]].w/=2; cout<<ans<<endl; return 0; }