zoukankan      html  css  js  c++  java
  • 464. Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

    What if we change the game so that players cannot re-use integers?

    For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

    Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

    You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

    Example

    Input:
    maxChoosableInteger = 10
    desiredTotal = 11

    Output:
    false

    Explanation:
    No matter which integer the first player choose, the first player will lose.
    The first player can choose an integer from 1 up to 10.
    If the first player choose 1, the second player can only choose integers from 2 up to 10.
    The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
    Same with other integers chosen by the first player, the second player will always win.

    
    class Solution(object):
        def canIWin(self, maxChoosableInteger, desiredTotal):
            """
            :type maxChoosableInteger: int
            :type desiredTotal: int
            :rtype: bool
            """
    
            total = maxChoosableInteger * (maxChoosableInteger + 1) // 2
            if total < desiredTotal:
                return False
            if total == desiredTotal:
                return (maxChoosableInteger % 2 == 1)
            if maxChoosableInteger >= desiredTotal:
                return True
            mask = 1 << maxChoosableInteger
            self.record = {}
            return self.checkWin(maxChoosableInteger, mask, desiredTotal)
    
        def checkWin(self, target, mask, remain):
            if mask in self.record:
                return self.record[mask]
            for i in range(target):
                if (1 & (mask >> i)) != 0:
                    continue
                n = i + 1  # n: picked number
                if (n >= remain) or (self.checkWin(target, mask | (1 << i), remain - n) is False):
                    self.record[mask] = True
                    return True
            self.record[mask] = False
            return False
    

    好难。
    首先要注意使用一个二进制数来保存状态空间,如果用字符串会MLE。这意味着会有一些让人头疼的位运算。
    这样可以给字典的键赋一个初始值 d = collections.defaultdict(lambda : False)

  • 相关阅读:
    网络流24题之 1738: 最小路径覆盖问题
    POJ 1966 Cable TV Network
    网络流24题- 魔术球问题
    网络流24题之 圆桌问题
    可持久化线段树维护启发式合并的可持久化并查集
    HDU 6166 Senior Pan
    ACM对拍cpp程序
    双联通分量复习
    欧拉回路求路径POJ 2230
    LCA的两种求法
  • 原文地址:https://www.cnblogs.com/bernieloveslife/p/9739723.html
Copyright © 2011-2022 走看看